Publications by authors named "Nagireddy Dumpa"

The main objective of the current research was to investigate the effect of tablet shapes (heart-shaped and round tablets) and infill densities (50% and 100%) on the drug release profiles of 3D printed tablets prepared by hot-melt extrusion paired with fused deposition modeling techniques. Drug-loaded filaments of 1.5 mm and 2.

View Article and Find Full Text PDF

Pharmaceutical cocrystals are a promising strategy to increase the solubility and dissolution rate of poorly soluble drugs. However, their manufacturing process requires a large quantity of solvents. The present study aimed to produce cocrystals by a solvent-free hot melt extrusion (HME) method to improve their solubility and dissolution rate.

View Article and Find Full Text PDF

Advancements in pharmaceutical technologies have led to the personalization of therapies over the last decade. Three-dimensional printing (3DP) is an emerging technique in the manufacturing of pharmaceutical dosage forms because of its potential to create complex and customized dosage forms according to the patient's needs. Among the various 3DP techniques based on different functioning mechanisms, fused deposition modeling (FDM) 3D printing is a versatile and widely used method with advantages such as precision of quantity and the ability to incorporate different fill densities.

View Article and Find Full Text PDF

The objective of the current study was to develop theophylline (TPH) nicotinamide (NAM) pharmaceutical co-crystals using the hot melt extrusion (HME) technology and evaluate the processability of the co-crystals using different polymeric carriers. A physical mixture of 1:1 M ratio of TPH and NAM was employed to prepare the co-crystals. Hydroxypropylmethylcellulose acetate succinate, polyethylene oxide, and Kollidon® VA-64 (5% w/w) were investigated as polymeric carriers for the HME process.

View Article and Find Full Text PDF

Interest in 3D printing for pharmaceutical applications has increased in recent years. Compared to other 3D printing techniques, hot melt extrusion (HME)-based fused deposition modeling (FDM) 3D printing has been the most extensively investigated for patient-focused dosage. HME technology can be coupled with FDM 3D printing as a continuous manufacturing process.

View Article and Find Full Text PDF

The objective of this work was to develop taste-masked donut-shaped tablet formulations utilizing fused filament fabrication three-dimensional printing paired with hot-melt extrusion techniques. Caffeine citrate was used as the model drug for its bitter taste, and a 3-point bend test was performed to assess the printability of filaments. The stiffness constant was calculated to represent the printability by fitting the breaking distances and stress data into Hooke's law.

View Article and Find Full Text PDF

The objective of the present study was to develop extended-release (ER) hot-melt extruded (HME) abuse-deterrent pellets of acetaminophen, a model drug, by utilizing high molecular weight polyethylene oxide (PEO) and gelling agents (xanthan gum, guar gum, and gellan gum). The HME pellets were evaluated for their abuse-deterrence (AD) potential by Category-1 laboratory in-vitro evaluation parameters, including particle size reduction (PSR), small volume extraction, dissolution, viscosity, syringeability, and injectability. Further, the pellets were investigated for resistance to physical (crushing) and thermal (oven and microwave) manipulation to evaluate the strength of the AD properties.

View Article and Find Full Text PDF