Ultrasound Med Biol
June 2024
Objective: Novel strategies for treating triple-negative breast cancer (TNBC) are ongoing because of the lack of standard-of-care treatment. Nanoframed materials with a protein pillar are considered a valuable tool for designing multigoals of energy-absorbing/medication cargo and are a bridge to cross-conventional treatment strategies.
Methods: Nanobioconjugates of gold nanoclusters-bovine serum albumin (AuNCs-BSA) and doxorubicin-AuNCs-BSA (Dox-AuNCs-BSA) were prepared and employed as a simultaneous double photosensitizer/sonosensitizer and triple chemotherapeutic/photosensitizer/sonosensitizer, respectively.
Background: Sonodynamic Therapy (SDT), a safe and non-invasive strategy in tumor therapy, is in development using novel sono-sensitizers, activated by low-intensity ultrasound radiation. SDT mainly progresses through Reactive Oxygen Species (ROS) generation followed by cell annihilation.
Objective: The current study aimed to investigate the effect of ultrasound therapy with titania/gold nanoparticles (NPs) on melanoma cancer.
Alzheimer's disease (AD) is the most common neurological disease and a serious cause of dementia, which constitutes a threat to human health. The clinical evidence has found that extracellular amyloid-beta peptides (Aβ), phosphorylated tau (p-tau), and intracellular tau proteins, which are derived from the amyloid precursor protein (APP), are the leading biomarkers for accurate and early diagnosis of AD due to their central role in disease pathology, their correlation with disease progression, their diagnostic value, and their implications for therapeutic interventions. Their detection and monitoring contribute significantly to understanding AD and advancing clinical care.
View Article and Find Full Text PDFObjective: Noble metal nanomaterials have been introduced as ideal sonosensitizers for sonodynamic therapy (SDT) of cancer. In this research, platinum nanoparticles (PtNPs) and mesoporous platinum (MPt) were first synthesized and then evaluated as novel sonosensitizers.
Methods: Ultrasound waves were radiated at two different power densities and two different pulse ratios to develop a pulsed radiation route for SDT of the malignant melanoma cell line C540 (B16/F10).
Objective: Cancer treatment using ultrasound irradiation with low intensities along with a sonosensitizer has been found to have significant advantages, such as high penetration depth in tissues, non-invasive therapeutic character, minor side effects, good patient adherence and preferential tumor area treatment. In the present study, gold nanoparticles covered by poly(ortho-aminophenol) (Au@POAP NPs) were synthesized and characterized as a new sonosensitizer.
Methods: We investigated Au@POAP NPs efficacy on fractionated ultrasound irradiation for treatment of melanoma cancer in vitro as well as in vivo.
Background: Alzheimer's disease (AD) is a common form of dementia, characterized by production and deposition of β-amyloid peptide in the brain. Thus, β-amyloid peptide is a potentially promising biomarker used to diagnose and monitor the progression of AD.
Objective: The study aims to develop a biosensor based on a molecularly imprinted poly-pyrrole for detection of β-amyloid.
Objective: An attractive cell source for stem cell-based therapy are WJ-MSCs. Hence, tracking WJ-MSCs using non-invasive imaging procedures (such as MRI) and contrast agents (Zn0.5Ni0.
View Article and Find Full Text PDFIn this study, a sensitive and accurate aptasensor was designed for early detection of myocardial infarction through the determination of troponin T (TnT). The successful immobilization of a specific aptamer sequence on the surface of gold that had a high affinity toward TnT was accomplished. TnT was electrochemically quantified.
View Article and Find Full Text PDFSonodynamic therapy (SDT) has established a novel route for treating solid cancers. Low-intensity ultrasound irradiation accompanied by a sonosensitizer has revealed remarkable advantages for cancer therapy such as targeted uptake, access to deeper tumors, insignificant side effects and invasiveness, compared with other therapeutic methods. In this study, we scrutinized synthesis and characterization of a polypyrrole-coated multi-walled carbon nanotubes composite (PPy@MWCNTs).
View Article and Find Full Text PDFWidespread resistance to antibiotics amongst pathogens has become a tremendous challenge of high morbidity and mortality rates which increases the needs to exploring novel methods of treatment. An efficient antimicrobial procedure to root out pathogenic bacteria is photothermal therapy. In this study, antimicrobial effects of a polypyrrole-carbon nanocomposite (PPy-C) upon laser irradiation in order to destroy the pathogenic gram-positive bacterium, methicillin-resistant (MRSA) were assessed.
View Article and Find Full Text PDFCutaneous leishmaniasis is still a health problem worldwide, especially in tropical and subtropical areas. Currently, pentavalent antimony compounds are used to treat leishmaniasis. These compounds cause various side effects in the body.
View Article and Find Full Text PDFA green electrodeposition method was firstly employed for the synthesis of round hairbrush-like gold nanostructure in the presence of cadaverine as a size and shape directing additive. The nanostructure which comprised of arrays of nanospindles was then applied as a transducer to fabricate a signal-on built in-marker electrochemical aptasensor for the detection of human prostate-specific antigen (PSA). The aptasensor detected PSA with a linear concentration range of 0.
View Article and Find Full Text PDFBackground: Protein aggregation is one of the important, common and troubling problems in biotechnology, pharmaceutical industries and amyloid-re-lated disorders.
Methods: In the present study, the inhibitory effects of some carbohydrates (alginate, β-cyclodextrin and trehalose) on the formation of nano-globular aggregates from normal (HSA) and glycated (GHSA) human serum albumin were studied; when the formation of aggregates was induced by the simultaneous heating and addition of dithiotheritol. For the investigations, the biophysical methods of UV-vis spectrophotometry, circular dichroism spectroscopy, transmission electron microscopy and tensiometry were employed.
Background: Nowadays, magnetic nanoparticles (MNPs) have received much attention because of their enormous potentials in many fields such as magnetic fluid hyperthermia (MFH). The goal of hyperthermia is to increase the temperature of malignant cells to destroy them without any lethal effect on normal tissues. To investigate the effectiveness of cancer therapy by magnetic fluid hyperthermia, Fe0.
View Article and Find Full Text PDFGold nanoribbons covered by gold nanoblooms were sonoelectrodeposited on a polycrystalline gold surface at -1800 mV (vs. AgCl) with the assistance of ultrasound and co-occurrence of the hydrogen evolution reaction. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and fabrication of a genosensor, and the process of immobilization and hybridization was detected by electrochemical methods, using methylene blue as a redox marker.
View Article and Find Full Text PDFThe aim of the study was to determine the efficacy of different products containing fluoride, calcium and phosphate for enamel remineralization in eroded primary teeth. A total of 90 sound primary canine teeth were randomly divided into 5 groups of 18 teeth each: 1) control (polished enamel), 2) 5% DuraShield sodium fluoride varnish, 3) 500 ppm fluoridated toothpaste, 4) casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) cream, and 5) Clinpro White varnish containing functionalized tri-calcium phosphate (fTCP). Enamel microhardness (EMH) was measured in all samples before and after demineralization and after 28 days of remineralization.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
November 2014
Lactic acidosis occurs in a number of clinical conditions, e.g. in surgeries, orthotopic liver transplant, and anesthetic agent administration, which has deleterious effects on the patient's survival.
View Article and Find Full Text PDFDiabetic complication arises from the presence of advanced glycation end products in different sites of the body. Great attention should be paid to recognizing anti-glycation compounds. Here, deferiprone as an oral iron chelator drug administrated in treatment of β-thalassemic patients was selected to find its effect on the fructation of hemoglobin (Hb).
View Article and Find Full Text PDFHyperglycemia and advanced glycation end products (AGEs) have considerable effects in diabetic patients. So, the recognition of anti-glycation property of compounds has a substantial benefit. Here, desferal, an iron chelator which is one of the most effective drugs in β-thalassemia patients, was chosen to explore its effects on the fructation process of hemoglobin (Hb).
View Article and Find Full Text PDFNickel microspheres were synthesized via a water-in-oil reverse nanoemulsion system using nickel nitrate as the nickel precursor and hydrazine hydrate as the reducing agent. The nanoemulsion was a triton X-100/cyclohexane/water ternary system. The surface morphology of the nickel microspheres was studied by scanning electron microscopy, which indicated that the microspheres had a nanoporous structure.
View Article and Find Full Text PDFThe interaction of different domains belonging to Human Serum Albumin (HSA) with open form of glucose have been investigated using molecular dynamics simulation methods. Applying docking, primary structures involving interaction of some residues with glucose have been obtained. Subsequently, equilibrium geometries at 300 K and minimum geometries have been determined for each of aforementioned structures by employing MD simulation and simulated annealing.
View Article and Find Full Text PDFThe effects of beta-cyclodextrin (beta-CyD) and trehalose on glycation of human serum albumin (HSA) were studied. These additives reduced AGEs and nanofibril formation of HSA under in vitro glycation conditions and improved its helical structure. These were accomplished through direct interactions of them with HSA and alterations in solute-protein interactions.
View Article and Find Full Text PDFWidespread use of mobile phones has increased the human exposure to electromagnetic fields (EMFs). It is required to investigate the effect of EMFs on the biological systems. In this paper the effect of mobile phone RF (910MHz and 940 MHz) on structure and function of HbA was investigated.
View Article and Find Full Text PDF