J Colloid Interface Sci
September 2021
The development of superior heterogeneous catalyst for hydrogen (H) evolution is a significant feature and challenging for determining the energy and environmental crises. However, the dumping of numerous lethal colorants (dye) as of textile manufacturing has fascinated widespread devotion-aimed water pollution anticipation and treatment. In this regard, a photocatalytic H evolution by visible light using low-dimensional semiconducting materials having pollutant degradable capacity for Rhodamine B dyes (RhB) has been anticipated as a route towards environmental aspect.
View Article and Find Full Text PDFPhotocatalytic full water splitting remains the perfect way to generate oxygen (O) and hydrogen (H) gases driven by sunlight to address the future environmental issues as well as energy demands. Owing to its exceptional properties, polymeric carbon nitride (PCN) has been one of the most widely investigated semiconductor photocatalysts. Nevertheless, blank PCN characteristically displays restrained photocatalytic performance due to high-density defects in its framework that may perhaps perform the part of the recombination midpoint for photoproduced electron-hole pairs.
View Article and Find Full Text PDFResearch based on the full water splitting via heterogenous semiconducting photocatalyst is a significant characteristic nevertheless challenging for determining the energy and environmental crises. With respect to this, a photocatalytic water splitting by visible light through heterojunction semiconductors has been anticipated as a route to the sustainable energy. For the first time, we integrate a potential conjugated donor-acceptor (DA) co-monomer such as 2, 3-dichloroquinoxaline (DCQ) within the structure of polymeric carbon nitride (PCN) by a facile one-pot co-polymerization process.
View Article and Find Full Text PDFThe conjugated co-monomer, trimesic acid (TMA) was integrated into the triazine framework of polymeric carbon nitride (PCN), synthesized through chemical condensation of urea. The TMA-modified carbon nitride samples obtained were named as CNU-TMA and it was utilized for the photocatalytic reduction of carbon dioxide (CO) under visible light illumination. The induction of such electron donor-acceptor co-monomer (TMA) dominates the intramolecular structure of PCN by acting as a nucleophilic substitution substrate to facilitate the electron density in the π-electron conjugated system of PCN and thus elevate its photocatalytic activity.
View Article and Find Full Text PDF