Background: Pharmacovigilance and safety reporting, which involve processes for monitoring the use of medicines in clinical trials, play a critical role in the identification of previously unrecognized adverse events or changes in the patterns of adverse events.
Objective: This study aims to demonstrate the feasibility of automating the coding of adverse events described in the narrative section of the serious adverse event report forms to enable statistical analysis of the aforementioned patterns.
Methods: We used the Unified Medical Language System (UMLS) as the coding scheme, which integrates 217 source vocabularies, thus enabling coding against other relevant terminologies such as the International Classification of Diseases-10th Revision, Medical Dictionary for Regulatory Activities, and Systematized Nomenclature of Medicine).