Publications by authors named "Nageswararao Chilukuri"

Chemical warfare nerve agents are organophosphorus chemical compounds that induce cholinergic crisis, leaving little or no time for medical intervention to prevent death. The current chemical treatment regimen may prevent death but does not prevent postexposure complications such as brain damage and permanent behavioral abnormalities. In the present study, we have demonstrated an adeno-associated virus 8 (AAV8)-mediated paraoxonase 1 variant IF-11 (PON1-IF11) gene therapy that offers asymptomatic prophylactic protection to mice against multiple lethal doses of G-type chemical warfare nerve agents, namely, tabun, sarin, cyclosarin, and soman, for up to 5 months in mice.

View Article and Find Full Text PDF

The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options-chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases-neither cure nor prevent genetic errors but often cause many side effects.

View Article and Find Full Text PDF

We evaluated the ability of evolved paraoxonase-1 (PON1) to afford broad spectrum protection against G-type nerve agents when produced in mammalian cells via an adenovirus expression system. The PON1 variants G3C9, VII-D11, I-F11, VII-D2 and II-G1 were screened in vitro for their ability to hydrolyze G-agents, as well as for their preference towards hydrolysis of the more toxic P(-) isomer. I-F11, with catalytic efficiencies of (1.

View Article and Find Full Text PDF

We investigated the ability of the engineered paraoxonase-1 variants G3C9, VII-D11, I-F11, and VII-D2 to afford protection against paraoxon intoxication. Paraoxon is the toxic metabolite of parathion, a common pesticide still in use in many developing countries. An in vitro investigation showed that VII-D11 is the most efficient variant at hydrolyzing paraoxon with a kcat/Km of 2.

View Article and Find Full Text PDF

In this study, we determined the ability of recombinant human liver prolidase to hydrolyze nerve agents in vitro and its ability to afford protection in vivo in mice. Using adenovirus containing the human liver prolidase gene, the enzyme was over expressed by 200- to 300-fold in mouse liver and purified to homogeneity by affinity and gel filtration chromatography. The purified enzyme hydrolyzed sarin, cyclosarin and soman with varying rates of hydrolysis.

View Article and Find Full Text PDF

Human paraoxonase-1 (HuPON1) has been proposed as a catalytic bioscavenger of organophosphorus (OP) pesticides and nerve agents. We assessed the potential of this enzyme to protect against OP poisoning using two different paradigms. First, recombinant HuPON1 purified from cabbage loopers (iPON1; Trichoplusia ni) was administered to guinea pigs, followed by exposure to at least 2 times the median lethal dose (LD(50)) of the OP nerve agents tabun (GA), sarin (GB), soman (GD), and cyclosarin (GF), or chlorpyrifos oxon, the toxic metabolite of the OP pesticide chlorpyrifos.

View Article and Find Full Text PDF

Human liver prolidase, a metal-dependent dipeptidase, is being tested as a potential catalytic bioscavenger against organophosphorus (OP) chemical warfare nerve agents. The purpose of this study was to determine whether persistent and high-levels of biologically active and intact recombinant human (rHu) prolidase could be introduced in vivo in mice using adenovirus (Ad). Here, we report that a single intravenous injection of Ad containing the prolidase gene with a 6× histidine-tag (Ad-prolidase) introduced high-levels of rHu prolidase in the circulation of mice which peaked on days 5-7 at 159 ± 129 U/mL.

View Article and Find Full Text PDF

Senescence marker protein (SMP30), also known as regucalcin, is a 34 kDa cytosolic marker protein of aging which plays an important role in intracellular Ca(2+) homeostasis, ascorbic acid biosynthesis, oxidative stress, and detoxification of chemical warfare nerve agents. In our goal to investigate the activity of SMP30 for the detoxification of nerve agents, we have produced a recombinant adenovirus expressing human SMP30 as a fusion protein with a hemaglutinin tag (Ad-SMP30-HA). Ad-SMP30-HA transduced the expression of SMP30-HA and two additional forms of SMP30 with molecular sizes ∼28 kDa and 24 kDa in HEK-293A and C3A liver cells in a dose and time-dependent manner.

View Article and Find Full Text PDF

Gene delivery using an adenoviral system has been effective in introducing therapeutic proteins in vitro and in vivo. This study tested the feasibility of using adenovirus to deliver clinically relevant amounts of butyrylcholinesterase (BChE), a proven bioscavenger of nerve agents. The adenovirus construct expressed full-length mouse BChE.

View Article and Find Full Text PDF

Human serum and recombinant butyrylcholinesterase (rHuBChE) are the most advanced prophylactics against organophosphate (OP) toxicity due to nerve agent or insecticide exposure. For ethical reasons, such potential multi-use treatments cannot be tested in humans and will require extensive testing in animal models and the "Animal Rule" 21 (21 CFR 601.90) for regulatory approval.

View Article and Find Full Text PDF

Senescence marker protein-30 (SMP30) has been reported to hydrolyze diisopropyl fluorophosphate (DFP), a surrogate compound of chemical warfare nerve agents. Thus, SMP30 has the potential to be useful as a prophylactic against chemical warfare nerve agent toxicity. Our efforts to generate human SMP30 in bacteria using a variety of expression vectors invariably resulted in insoluble and inactive preparations.

View Article and Find Full Text PDF

Human serum butyrylcholinesterase (Hu BChE) is a promising therapeutic against the toxicity of chemical warfare nerve agents. We have showed previously that recombinant (r) Hu BChE can be expressed at very high levels, 400 to 600 U/ml in mouse blood, by delivering the Hu BChE gene using adenovirus (Ad). Here, we report the biochemical properties of the Ad-expressed full-length and truncated rHu BChE in mouse blood.

View Article and Find Full Text PDF

The therapeutic value of human serum butyrylcholinesterase (Hu BChE) as a bioscavenger of chemical warfare agents is due to its high reactivity with organophosphorus compounds and prolonged circulatory stability. Native Hu BChE is mostly tetrameric in form while the enzyme produced using molecular cloning technology is a mixture of tetramers, dimers, and monomers. Previous studies revealed that monomers and dimers of recombinant human (rHu) BChE cleared rapidly from the circulation of mice compared to tetrameric rHu BChE and native Hu BChE, which have mean residence times (MRTs) of 18h and 45h, respectively.

View Article and Find Full Text PDF

Human serum butyrylcholinesterase (Hu BChE) serves as an efficacious bioscavenger of highly toxic organophosphorus (OP) compounds. Since there is a concern that the supply of native Hu BChE may be limited, monomeric and tetrameric forms of recombinant Hu BChE (rHu BChE) were evaluated as replacements and found that they lacked sufficient stability in vivo. However, their in vivo stability could be significantly prolonged by conjugation with polyethyleneglycol-20K (PEG) suggesting that monomeric and tetrameric PEG-rHu BChE could function as bioscavengers.

View Article and Find Full Text PDF

Human serum butyrylcholinesterase (Hu BChE) is a promising therapeutic against the toxicity of chemical warfare nerve agents, pesticide intoxication, and cocaine overdose. However, its widespread application is hampered by difficulties in large-scale production of the native protein from human plasma and/or availability as a recombinant protein suitable for use in vivo. This limitation may be resolved by in vivo delivery and expression of the Hu BChE gene.

View Article and Find Full Text PDF

Objective: Sulfur mustard is a well-known blistering chemical warfare agent that has been investigated for its toxicological mechanisms and an efficacious antidote. Since sulfur mustard injury involves dermal:epidermal separation, proteolytic enzymes were suspected to be involved for this separation and eventual blister development. Therefore, protease inhibitors could be of therapeutic utility against sulfur mustard injury.

View Article and Find Full Text PDF

The reactivation of nerve agent-inhibited acetylcholinesterase (AChE) by oxime is the most important step in the treatment of nerve agent poisoning. Since the evaluation of nerve agent antidotes cannot be conducted in humans, results from animal experiments are extrapolated to humans. Guinea pig is one of the animal models that is frequently used for conducting nerve agent antidote evaluations.

View Article and Find Full Text PDF

Objective: Sulfur mustard is a well-known blistering chemical warfare agent that has been investigated for its toxicological mechanisms and an efficacious antidote. Since sulfur mustard injury involves dermal:epidermal separation, proteolytic enzymes were suspected to be involved for this separation and eventual blister development. Therefore, protease inhibitors could be of therapeutic utility against sulfur mustard injury.

View Article and Find Full Text PDF