Publications by authors named "Nagesh Subbanna"

Recent research in computer vision has shown that original images used for training of deep learning models can be reconstructed using so-called inversion attacks. However, the feasibility of this attack type has not been investigated for complex 3D medical images. Thus, the aim of this study was to examine the vulnerability of deep learning techniques used in medical imaging to model inversion attacks and investigate multiple quantitative metrics to evaluate the quality of the reconstructed images.

View Article and Find Full Text PDF

In an increasingly data-driven world, artificial intelligence is expected to be a key tool for converting big data into tangible benefits and the healthcare domain is no exception to this. Machine learning aims to identify complex patterns in multi-dimensional data and use these uncovered patterns to classify new unseen cases or make data-driven predictions. In recent years, deep neural networks have shown to be capable of producing results that considerably exceed those of conventional machine learning methods for various classification and regression tasks.

View Article and Find Full Text PDF

Robust and reliable stroke lesion segmentation is a crucial step toward employing lesion volume as an independent endpoint for randomized trials. The aim of this work was to develop and evaluate a novel method to segment sub-acute ischemic stroke lesions from fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) datasets. After preprocessing of the datasets, a Bayesian technique based on Gabor textures extracted from the FLAIR signal intensities is utilized to generate a first estimate of the lesion segmentation.

View Article and Find Full Text PDF

In this paper, we present IMaGe, a new, iterative two-stage probabilistic graphical model for detection and segmentation of Multiple Sclerosis (MS) lesions. Our model includes two levels of Markov Random Fields (MRFs). At the bottom level, a regular grid voxel-based MRF identifies potential lesion voxels, as well as other tissue classes, using local and neighbourhood intensities and class priors.

View Article and Find Full Text PDF

Goal: In this paper, a fully automatic probabilistic method for multiple sclerosis (MS) lesion classification is presented, whereby the posterior probability density function over healthy tissues and two types of lesions (T1-hypointense and T2-hyperintense) is generated at every voxel.

Methods: During training, the system explicitly models the spatial variability of the intensity distributions throughout the brain by first segmenting it into distinct anatomical regions and then building regional likelihood distributions for each tissue class based on multimodal magnetic resonance image (MRI) intensities. Local class smoothness is ensured by incorporating neighboring voxel information in the prior probability through Markov random fields.

View Article and Find Full Text PDF

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task.

View Article and Find Full Text PDF

In this paper, we present a fully automated hierarchical probabilistic framework for segmenting brain tumours from multispectral human brain magnetic resonance images (MRIs) using multiwindow Gabor filters and an adapted Markov Random Field (MRF) framework. In the first stage, a customised Gabor decomposition is developed, based on the combined-space characteristics of the two classes (tumour and non-tumour) in multispectral brain MRIs in order to optimally separate tumour (including edema) from healthy brain tissues. A Bayesian framework then provides a coarse probabilistic texture-based segmentation of tumours (including edema) whose boundaries are then refined at the voxel level through a modified MRF framework that carefully separates the edema from the main tumour.

View Article and Find Full Text PDF

Intensity normalization is an important pre-processing step in the study and analysis of Magnetic Resonance Images (MRI) of human brains. As most parametric supervised automatic image segmentation and classification methods base their assumptions regarding the intensity distributions on a standardized intensity range, intensity normalization takes on a very significant role. One of the fast and accurate approaches proposed for intensity normalization is that of Nyul and colleagues.

View Article and Find Full Text PDF