A highly promising route to scale millions of qubits is to use quantum photonic integrated circuits (PICs), where deterministic photon sources, reconfigurable optical elements, and single-photon detectors are monolithically integrated on the same silicon chip. The isolation of single-photon emitters, such as the G centers and W centers, in the optical telecommunication O-band, has recently been realized in silicon. In all previous cases, however, single-photon emitters were created uncontrollably in random locations, preventing their scalability.
View Article and Find Full Text PDFThe use of self-assembly techniques may open new possibilities in scaling down electronic circuits to their ultimate limits. Deoxyribonucleic acid (DNA) nanotechnology has already demonstrated that it can provide valuable tools for the creation of nanostructures of arbitrary shape, therefore presenting an ideal platform for the development of nanoelectronic circuits. So far, however, the electronic properties of DNA nanostructures are mostly insulating, thus limiting the use of the nanostructures in electronic circuits.
View Article and Find Full Text PDF