Publications by authors named "Nagesh Bandi"

This manuscript discusses global regulatory divergence of dissolution requirements for modified release solid oral dosage forms and the obstacles that must be addressed to be compliant with evolving guidance and legislation. The proliferation of local guidance documents, changing regulatory expectations, and increased legal enforcement has resulted in mismatched country-specific dissolution testing requirements and similarity criteria, and heightens industry's challenges with registration of modified release solid oral dosage forms. The lack of global harmonization and the complexity added by minor regional adaptations contributes to inefficiencies and hinders industry's goal of developing and delivering medicines.

View Article and Find Full Text PDF

This publication summarizes the proceedings of day 3 of a 3-day workshop on "Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development." Specifically, this publication discusses the current approaches in building clinical relevance into drug product development for solid oral dosage forms, along with challenges that both industry and regulatory agencies are facing in setting clinically relevant drug product specifications (CRDPS) as presented at the workshop. The concept of clinical relevance is a multidisciplinary effort which implies an understanding of the relationship between the critical quality attributes (CQAs) and their impact on predetermined clinical outcomes.

View Article and Find Full Text PDF

The objective of this article is to compare and contrast the international expectations associated with the model-independent similarity factor approach to comparing dissolution profiles. This comparison highlights globally divergent regulatory requirements to meet local dissolution similarity requirements. In effect, experiments customized to meet the current international regulatory expectations for dissolution and drug release unnecessarily increase manufacturing costs, hinder science and risk-based approaches, increase collective regulatory burden, reduce continuous improvement and innovation, and potentially delay patient access to urgently needed medication.

View Article and Find Full Text PDF

The purpose of this study was to determine whether intratracheally instilled polymeric budesonide microparticles could sustain lung budesonide levels for one week and inhibit early biochemical changes associated with benzo(a)pyrene (B[a]P) feeding in a mouse model for lung tumours. Polymeric microparticles of budesonide-poly (DL-lactide-co-glycolide) (PLGA 50:50) were prepared using a solvent evaporation technique and characterized for their size, morphology, encapsulation efficiency, and in-vitro release. The microparticles were administered intratracheally (i.

View Article and Find Full Text PDF

The purpose of this study was to determine whether budesonide- and indomethacin-hydroxypropyl-beta-cyclodextrin (HPBCD) complexes could be formed using a supercritical fluid (SCF) process. The process involved the exposure of drug-HPBCD mixtures to supercritical carbon dioxide (SC CO2). The ability of the SCF process to form complexes was assessed by determining drug dissolution, drug crystallinity, and drug-excipient interactions.

View Article and Find Full Text PDF

Purpose: To determine whether LHRH-receptor is expressed in Calu-3, a human bronchial epithelial cell line, and to further determine whether this receptor plays a role in the transport of deslorelin, an LHRH agonist.

Methods: Using cultured monolayers of Calu-3 grown at air-interface, the presence and localization of LHRH-receptors in Calu-3 cells was determined using immunochemical methods. To determine the mechanisms of deslorelin transport, the directionality [apical-basolateral (A-B) and basolateral-apical (B-A)] of deslorelin transport across Calu-3 monolayers and the effects of temperature (37 degrees C and 4 degrees C) and an energy depletor (2,4-dinitrophenol) were investigated.

View Article and Find Full Text PDF

The objective of this study was to prepare and characterize microparticles of budesonide alone and budesonide and polylactic acid (PLA) using supercritical fluid (SCF) technology. A precipitation with a compressed antisolvent (PCA) technique employing supercritical CO2 and a nozzle with 100- microm internal diameter was used to prepare microparticles of budesonide and budesonide-PLA. The effect of various operating variables (temperature and pressure of CO2 and flow rates of drug-polymer solution and/or CO2) and formulation variables (0.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to determine whether budesonide inhibits expression of vascular endothelial growth factor (VEGF) in a retinal pigment epithelial cell line (ARPE-19) and to determine whether subconjunctivally administered budesonide nano- and microparticles sustain retinal drug levels.

Methods: The effect of budesonide (100 pM to 10 microM) on VEGF secretion, expression of VEGF mRNA, and cytotoxicity were determined in ARPE-19 cells by ELISA, RT-PCR, and a cell-viability assay, respectively. To determine the involvement of glucocorticoid receptor in the observed effects of budesonide, secretion and mRNA expression studies were also performed in the presence of a glucocorticoid receptor antagonist (RU486).

View Article and Find Full Text PDF

The objective of this study was to determine the expression and activity of multidrug resistance-associated protein (MRP1) in a human airway epithelial cell line (Calu-1) and to further assess whether budesonide, a potent antiasthma corticosteroid, alters the expression and activity of MRP1 in these cells. Reverse transcriptase polymerase chain reaction (RT-PCR) and the Western blot analysis demonstrated the MRP1 mRNA and MRP1 protein in Calu-1 cells. Indomethacin, probenecid, and verapamil significantly enhanced the fluorescein accumulation and reduced the fluorescein efflux, consistent with the MRP1 activity in the Calu-1 cells.

View Article and Find Full Text PDF