Publications by authors named "Nagendra S Ningaraj"

Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/capillaries that form the blood-brain barrier not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB).

View Article and Find Full Text PDF

Most anticancer drugs fail to impact patient survival since they fail to cross the blood-brain tumor barrier (BTB) at therapeutic levels. For example, Temozolomide (TMZ) exhibits some antitumor activity against brain tumors, so does Trastuzumab (Herceptin, Her-2 inhibitor), which might be effective against Her2 neu overexpressing gliomas. Nevertheless, intact BTB and active efflux system may prevent their entry to brain tumors.

View Article and Find Full Text PDF

Background: The prognosis for patients with breast tumor metastases to brain is extremely poor. Identification of prognostic molecular markers of the metastatic process is critical for designing therapeutic modalities for reducing the occurrence of metastasis. Although ubiquitously present in most human organs, large-conductance calcium- and voltage-activated potassium channel (BKCa) channels are significantly upregulated in breast cancer cells.

View Article and Find Full Text PDF

Several anticancer drugs are ineffective against brain tumor and do not impact patient survival because they fail to cross the blood-brain tumor barrier (BTB) effective levels. One such agent temozolomide is commonly used in brain tumor patients, which works better when combined with radiation or other anticancer agents. Likewise, trastuzumab (Herceptin, Her-2 inhibitor), which might be effective against Her2/neu over expressing gliomas may work well when combined with temozolomide.

View Article and Find Full Text PDF

Nearly 12.5 million new cancer cases are diagnosed worldwide each year. Although new treatments have been developed, most new anticancer drugs that are effective outside the brain have failed in clinical trials against brain tumours, in part due to poor penetration across the blood-brain barrier and the blood-brain tumour barrier.

View Article and Find Full Text PDF

Background: The blood-brain tumor barrier (BTB) significantly impedes delivery of most hydrophilic molecules to brain tumors. Several promising strategies, however, have been developed to overcome this problem.

Methods: We discuss several drug delivery methods to brain tumor, including intracerebroventricular, convection enhanced delivery, BBB/BTB disruption, and BTB permeability modulation, which was developed in our laboratory.

View Article and Find Full Text PDF

Brain tumor microvessels/capillaries limit drug delivery to tumors by forming a blood-brain tumor barrier (BTB). The BTB overexpresses ATP-sensitive potassium (K(ATP)) channels that are barely detectable in normal brain capillaries, and which were targeted for BTB permeability modulation. In a rat brain tumor model, we infused minoxidil sulfate (MS), a selective K(ATP) channel activator, to obtain sustained, enhanced, and selective drug delivery, including various sized molecules, across the BTB to brain tumors.

View Article and Find Full Text PDF

Even though the blood-brain tumor barrier (BTB) is more permeable than the blood-brain barrier (BBB), the BTB still significantly restricts the delivery of anticancer drugs to brain tumors. Brain tumor capillaries that form the BTB, however, express certain unique protein markers that are absent or barely detectable in normal brain capillaries. We were able to biochemically modulate one such protein marker, the calcium-dependent potassium (K(Ca)) channel, by using a specific K(Ca) channel agonist, NS-1619, to obtain sustained enhancement of selective drug delivery, including molecules of varying sizes, to tumors in rat syngeneic and xenograft brain tumor models.

View Article and Find Full Text PDF

The blood-brain tumor barrier (BTB) limits the delivery of therapeutic drugs to brain tumors. We demonstrate in a rat brain tumor (RG2) model an enhanced drug delivery to brain tumor following intracarotid infusion of bradykinin (BK), nitric oxide (NO) donors, or agonists of soluble guanylate cyclase (sGC) and calcium-dependent potassium (K(Ca)) channels. We modulated K(Ca) channels by specific agonists and agents that produce NO and cGMP in situ to obtain sustained enhancement of selective drug delivery to brain tumors.

View Article and Find Full Text PDF