Publications by authors named "Nageh F Abo-Dahab"

Fungal co-culture is a method that allows the detection of interactions between fungi, enabling the examination of bioactive novel metabolites induction that may not be produced in monocultures. Worldwide, basal rot is a primary limitation to onion yield, being caused by different species. Current research directions encourage biological control of plant diseases as a replacement for routine chemical treatments.

View Article and Find Full Text PDF

Burn injuries, which significantly affect global public health, require effective treatment strategies tailored to varying severity. Fungi are considered a sustainable, easily propagated source for lead therapeutic discovery. In this study, we explored the burn wound healing potential of through a combination of in vitro, in vivo, metabolite profiling, and in silico analysis.

View Article and Find Full Text PDF

Oleaginous fungi have attracted a great deal of interest for their potency to accumulate high amounts of lipids (more than 20% of biomass dry weight) and polyunsaturated fatty acids (PUFAs), which have a variety of industrial and biological applications. Lipids of plant and animal origin are related to some restrictions and thus lead to attention towards oleaginous microorganisms as reliable substitute resources. Lipids are traditionally biosynthesized intra-cellularly and involved in the building structure of a variety of cellular compartments.

View Article and Find Full Text PDF

and are recognized as causative agents in numerous diseases, and the rise of multidrug-resistant strains emphasizes the need to explore natural sources, such as fungi, for effective antimicrobial agents. This study aims to assess the in vitro anti-staphylococcal and anti-candidal potential of ethyl acetate extracts from various soil-derived fungal isolates. The investigation includes isolating and identifying fungal strains as well as determining their antioxidative activities, characterizing their phenolic substances through HPLC analysis, and conducting in silico molecular docking assessments of the phenolics' binding affinities to the target proteins, tyrosyl-tRNA synthetase and secreted aspartic protease 2.

View Article and Find Full Text PDF

Resveratrol (3,4,5-trihydroxystilbene) is a naturally occurring polyphenolic stilbene compound produced by certain plant species in response to biotic and abiotic factors. Resveratrol has sparked a lot of interest due to its unique structure and approved therapeutic properties for the prevention and treatment of many diseases such as neurological disease, cardiovascular disease, diabetes, inflammation, cancer, and Alzheimer's disease. Over the last few decades, many studies have focused on the production of resveratrol from various natural sources and the optimization of large-scale production.

View Article and Find Full Text PDF

Breast, cervical, and ovarian cancers are among the most serious cancers and the main causes of mortality in females worldwide, necessitating urgent efforts to find newer sources of safe anticancer drugs. The present study aimed to evaluate the anticancer potency of mycoendophytic AUMC14342 ethyl acetate extract on HeLa (cervical cancer), SKOV-3 (ovarian cancer), and MCF-7 (breast adenocarcinoma) cell lines. The extract showed potent effect on MCF-7 cells with an IC50 value of 55.

View Article and Find Full Text PDF

Oxidative stress is involved in the pathophysiology of multiple health complications, and it has become a major focus in targeted research fields. As known, black seeds are rich sources of bio-active compounds and widely used to promote human health due to their excellent medicinal and pharmaceutical properties. The present study investigated the antioxidant potency of various black seeds from plants and their derived mycoendophytes, and determined the total phenolic and flavonoid contents in different extracts, followed by characterization of major constituents by HPLC analysis.

View Article and Find Full Text PDF

Xylan is the primary hemicellulosic polymer found in lignocellulosic agricultural wastes and can be degraded by xylanase. In the current research, and were tested for their ability to produce xylanase from tangerine peel by submerged fermentation. Experiments on five variables were designed with Box-Behnken design and response surface methodology.

View Article and Find Full Text PDF