Adv Protein Chem Struct Biol
July 2023
Cellular senescence is an irreversible proliferation arrest in response to cellular damage and stress. Although cellular senescence is a highly stable cell cycle arrest, it can influence many physiological, pathological, and aging processes. Cellular senescence can be triggered by various intrinsic and extrinsic stimuli such as oxidative stress, mitochondrial dysfunction, genotoxic stress, oncogenic activation, irradiation and chemotherapeutic agents.
View Article and Find Full Text PDFtRNA methyltransferase 9 (Trm9)-catalysed tRNA modifications have been shown to translationally enhance the DNA damage response (DDR). Here, we show that Saccharomyces cerevisiae trm9Δ, distinct DNA repair and spindle assembly checkpoint (SAC) mutants are differentially sensitive to the aminoglycosides tobramycin, gentamicin and amikacin, indicating DDR and SAC activation might rely on translation fidelity, under aminoglycoside stress. Further, we report that the DNA damage induced by aminoglycosides in the base excision repair mutants ogg1Δ and apn1Δ is mediated by reactive oxygen species, which induce the DNA adduct 8-hydroxy deoxyguanosine.
View Article and Find Full Text PDFIn Arabidopsis thaliana, a eudicot species, the transcription factor LFY is expressed throughout the floral meristem and promotes their formation. The expression pattern of the rice LFY homolog-RFL shows distinct differences from that of its Arabidopsis counterpart. In the March issue of PNAS (2008) we have shown the temporally-regulated high-level expression of RFL in the apical meristem is necessary for its transition to an inflorescence meristem and thus to initiate flowering.
View Article and Find Full Text PDFActivity of axillary meristems dictates the architecture of both vegetative and reproductive parts of a plant. In Arabidopsis thaliana, a model eudicot species, the transcription factor LFY confers a floral fate to new meristems arising from the periphery of the reproductive shoot apex. Diverse orthologous LFY genes regulate vegetative-to-reproductive phase transition when expressed in Arabidopsis, a property not shared by RFL, the homolog in the agronomically important grass, rice.
View Article and Find Full Text PDF