Introduction: Black pepper (Piper nigrum L.) is a non-model spice crop of significant agricultural and biological importance. The 'quick wilt' disease caused by the oomycete Phytophthora capsici is a major threat, leading to substantial crop loss.
View Article and Find Full Text PDFThe olfactory system is capable of detecting and distinguishing thousands of environmental odorants that play a key role in reproduction, social behaviours including pheromones influenced classical events. Membrane secretary odorant binding proteins (OBPs) are soluble lipocalins, localized in the nasal membrane of mammals. They bind and carry odorants within the nasal epithelium to putative olfactory transmembrane receptors (ORs).
View Article and Find Full Text PDFOlfaction is the response to odors and is mediated by a class of membrane-bound proteins called olfactory receptors (ORs). An understanding of these receptors serves as a good model for basic signal transduction mechanisms and also provides important clues for the strategies adopted by organisms for their ultimate survival using chemosensory perception in search of food or defense against predators. Prior research on cross-genome phylogenetic analyses from our group motivated the addressal of conserved evolutionary trends, clustering, and ortholog prediction of ORs.
View Article and Find Full Text PDFG-protein coupled receptors (GPCRs) are one of the largest groups of membrane proteins and are popular drug targets. The work reported here attempts to perform cross-genome phylogeny on GPCRs from two widely different taxa, human versus C. elegans genomes and to address the issues on evolutionary plasticity, to identify functionally related genes, orthologous relationship, and ligand binding properties through effective bioinformatic approaches.
View Article and Find Full Text PDFUnlabelled: Multiple sequence alignments become biologically meaningful only if conserved and functionally important residues and secondary structural elements preserved can be identified at equivalent positions. This is particularly important for transmembrane proteins like G-protein coupled receptors (GPCRs) with seven transmembrane helices. TM-MOTIF is a software package and an effective alignment viewer to identify and display conserved motifs and amino acid substitutions (AAS) at each position of the aligned set of homologous sequences of GPCRs.
View Article and Find Full Text PDFG-protein coupled receptors (GPCRs) belong to biologically important and functionally diverse and largest super family of membrane proteins. GPCRs retain a characteristic membrane topology of seven alpha helices with three intracellular, three extracellular loops and flanking N' and C' terminal residues. Subtle differences do exist in the helix boundaries (TM-domain), loop lengths, sequence features such as conserved motifs, and substituting amino acid patterns and their physiochemical properties amongst these sequences (clusters) at intra-genomic and inter-genomic level (please re-phrase into 2 statements for clarity).
View Article and Find Full Text PDF