Rearrangements in the Scholl reaction have traditionally been serendipitous, lacking a systematic approach for synthesizing rearranged and cyclized products. This paper introduces a strategic pathway to achieve rearranged-cyclized thienotetrahelicene derivatives over direct-cyclized chrysenothiophene derivatives by finely modifying the reaction conditions and tuning the electronic properties in Scholl-type reaction precursors, tetraarylthiophenes. Through careful design principles, we demonstrate the programmable synthesis of these distinct products.
View Article and Find Full Text PDFRearrangements in Scholl reaction are mostly serendipitous. The design of molecular precursors is what seems to guide the course of rearrangement. This review consolidates different classes of precursors used in Scholl reaction and their accompanying rearrangements that include aryl migration, migration followed by cyclization and skeletal rearrangements involving ring expansion, ring contraction and both, under the reaction conditions.
View Article and Find Full Text PDF