Publications by authors named "Nagaraju Mupparapu"

Site-selective modification of complex peptides and the functionalization of their C-H bonds hold great promise for expanding their use in therapeutics and biomedical research. Herein, we leverage the power of late-stage chemoenzymatic catalysis using an indole prenyltransferase (IPT) enzyme and alkyl diphosphates to specifically modify the indole ring of tryptophan in clinically relevant peptides. Furthermore, the installed handle enables bioorthogonal click chemistry through an inverse electron-demand Diels-Alder (IEDDA) reaction with a biotin-conjugated tetrazine probe.

View Article and Find Full Text PDF

Indole is a significant structural moiety and functionalization of the C-H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl, C5 carbon units, on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization.

View Article and Find Full Text PDF

The late-stage functionalization of indole- and tryptophan-containing compounds with reactive moieties facilitates downstream diversification and leads to changes in their biological properties. Here, the synthesis of two hydroxy-bearing allyl pyrophosphates is described. A chemoenzymatic method is demonstrated which uses a promiscuous indole prenyltransferase enzyme to install a dual reactive hydroxy-bearing allyl moiety directly on the indole ring of tryptophan-containing peptides.

View Article and Find Full Text PDF

Daptomycin (DAP) is a calcium (Ca )-dependent FDA-approved antibiotic drug for the treatment of Gram-positive infections. It possesses a complex pharmacophore hampering derivatization and/or synthesis of analogues. To mimic the Ca -binding effect, we used a chemoenzymatic approach to modify the tryptophan (Trp) residue of DAP and synthesize kinetically characterized and structurally elucidated regiospecific Trp-modified DAP analogues.

View Article and Find Full Text PDF

Transition-metal-catalyzed programmed sequential arylation reactions of 2-chloro-4-nitro-1H-imidazoles were achieved. The methods are general and were applied in a chemoselective manner for the synthesis of different multiarylated 4-nitroimidazoles bearing three different aryl groups. A salient feature is Pd-catalyzed hetero-hetero coupling at the C5 position through a NO2 directed cross-dehydrogenative coupling (CDC) approach.

View Article and Find Full Text PDF

A novel one-pot tandem process involving Knoevenagel condensation, Michael addition, selective amidation, and Paal-Knorr cyclization to diverse functionalized 3-hydroxy-2-furanyl-acrylamides from simple 2-oxoaldehydes and aroylacetonitriles was presented. Attempts were also made to expand the scope of the reaction to different 2-heteroarylfurans. The packing diagram of the molecules viewed down along the α-axis of the unit cell showed a characteristic intramolecular classical O-H···O hydrogen bond between hydroxyl and carbonyl O atoms leading to self-associated ()-2-furanyl-acrylamides.

View Article and Find Full Text PDF

Phosphatidylinositol 3-kinase (PI3K) pathway drives cancer progression through direct regulation of most oncogenic properties. Here, we report that PI3K pathway signaling up-regulates cancer cell proliferation, metastasis and angiogenesis through modulation of cancer metabolism. These oncogenic metabolic processes were disrupted, by a novel PI3K inhibitor, 3-Dihydro-2-(naphthalene-1-yl) quinazolin-4(1H)-one (DHNQ) in colon cancer cells.

View Article and Find Full Text PDF

Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is responsible for initiation, chemo-resistance, and poor prognosis of colorectal cancer (CRC). Therefore, PI3K pathway inhibition can provide a plausible way of attaining CRC treatment. We report PI3K target specific synthesis and selection of a potent molecule, that is, 2,3-dihydro-2-(naphthalene-1-yl) quinazolin-4(1H)-one (DHNQ) from quinazolinone series based on the structural activity relationship after evaluation in diverse cancers.

View Article and Find Full Text PDF

An efficient metal-free method for the synthesis of α-ketothioesters is described for the first time. This reaction features the ability of pyrrolidine to fine-tune the reaction between 2-oxoaldehyde and thiols through iminium to the desired product in moderate to good yields. As an advantage, no external oxidants or metal catalysts are required in our method.

View Article and Find Full Text PDF

Given the attractive ability of iminium ions to functionalize molecules directly at ostensibly unreactive positions, the reactivity of iminium ions, in which an α CH2 group is replaced by CO was explored. Background studies on the ability of such iminium cations to promote reactions via an iminium-catalyzed or iminium-equivalent pathway are apparently unavailable. Previously, tandem cross-coupling reactions were reported, in which an iminium ion undergoes nucleophilic 1,2-addition to give a putative three-component intermediate that abstracts a proton in situ and undergoes self-deamination followed by unprecedented DMSO/aerobic oxidation to generate α-ketoamides.

View Article and Find Full Text PDF

Crosstalk between apoptosis and autophagy is budding as one of the novel strategies in the cancer therapeutics. The present study tinted toward the interdependence of autophagy and apoptosis induce by a novel quinazolinone derivative 2,3-dihydro-2-(quinoline-5-yl) quinazolin-4(1)-one structure [DQQ] in human leukemia MOLT-4 cells. DQQ induces cytochrome arbitrated apoptosis and autophagy in MOLT-4 cells.

View Article and Find Full Text PDF

A novel and efficient method for the synthesis of α-ketoamides, employing a dimethyl sulfoxide (DMSO)-promoted oxidative amidation reaction between 2-oxoaldehydes and amines under metal-free conditions is presented. Furthermore, mechanistic studies supported an iminium ion-based intermediate as a central feature of reaction wherein C1-oxygen atom of α-ketoamides is finally derived from DMSO.

View Article and Find Full Text PDF