Background: Bacterial pneumonia is a major risk factor for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Pseudomonas aeruginosa (PA), an opportunistic pathogen with an increasing resistance acquired against multiple drugs, is one of the main causative agents of ALI and ARDS in diverse clinical settings. Given the anti-inflammatory role of the cannabinoid-2 receptor (CB2R), the effect of CB2R activation in the regulation of PA-induced ALI and inflammation was tested in a mouse model as an alternative to conventional antibiotic therapy.
View Article and Find Full Text PDFBackground: Chronic tissue injury was shown to induce progressive scarring in fibrotic diseases such as idiopathic pulmonary fibrosis (IPF), while an array of repair/regeneration and stress responses come to equilibrium to determine the outcome of injury at the organ level. In the lung, type I alveolar epithelial (ATI) cells constitute the epithelial barrier, while type II alveolar epithelial (ATII) cells play a pivotal role in regenerating the injured distal lungs. It had been demonstrated that eukaryotic cells possess repair machinery that can quickly patch the damaged plasma membrane after injury, and our previous studies discovered the membrane-mending role of Tripartite motif containing 72 (TRIM72) that expresses in a limited number of tissues including the lung.
View Article and Find Full Text PDFAlveolar macrophages (AMs) guard the alveolar space of the lung. Phagocytosis by AMs plays a critical role in the defense against invading pathogens, the removal of dead cells or foreign particles, and in the resolution of inflammatory responses and tissue remodeling, processes that are mediated by various surface receptors of the AMs. Here, we report methods for the analysis of the phagocytic function of AMs using in vitro and in vivo assays and experimental strategies to differentiate between the pattern recognition receptor-, complement receptor-, and Fc gamma receptor-mediated phagocytosis.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
November 2018
Studies showed that TRIM72 is essential for repair of alveolar cell membrane disruptions, and exogenous recombinant human TRIM72 protein (rhT72) demonstrated tissue-mending properties in animal models of tissue injury. Here we examine the mechanisms of rhT72-mediated lung cell protection in vitro and test the efficacy of inhaled rhT72 in reducing tissue pathology in a mouse model of ventilator-induced lung injury. In vitro lung cell injury was induced by glass beads and stretching.
View Article and Find Full Text PDFAlcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD). However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7) mice to ethanol activates caspase-3 via cannabinoid receptor type-1 (CB1R) in neonatal mice and causes a reduction in methylated DNA binding protein (MeCP2) levels.
View Article and Find Full Text PDFThe complement system plays a critical role in immune responses against pathogens. However, its identity and regulation in the lung are not fully understood. This study aimed to explore the role of tripartite motif protein (TRIM) 72 in regulating complement receptor (CR) of the Ig superfamily (CRIg) in alveolar macrophage (AM) and innate immunity of the lung.
View Article and Find Full Text PDFThe present study was undertaken to evaluate the immediate and long-term effects of a single-day exposure to 5-Azacytidine (5-AzaC), a DNA methyltransferase inhibitor, on neurobehavioral abnormalities in mice. Our findings suggest that the 5-AzaC treatment significantly inhibited DNA methylation, impaired extracellular signal-regulated kinase (ERK1/2) activation and reduced expression of the activity-regulated cytoskeleton-associated protein (Arc). These events lead to the activation of caspase-3 (a marker for neurodegeneration) in several brain regions, including the hippocampus and cortex, two brain areas that are essential for memory formation and memory storage, respectively.
View Article and Find Full Text PDFRNA Polymerase II transcribes beyond what later becomes the 3' end of a mature messenger RNA (mRNA). The formation of most mRNA 3' ends results from pre-mRNA cleavage followed by polyadenylation. In vitro studies have shown that low concentrations of ATP stimulate the 3' cleavage reaction while high concentrations inhibit it, but the origin of these ATP effects is unknown.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
March 2016
Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.
View Article and Find Full Text PDFBackground: Ethanol exposure to rodents during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces long-term potentiation and memory deficits. However, the molecular mechanisms underlying these deficits are still poorly understood.
Methods: In the present study, we explored the potential role of epigenetic changes at cannabinoid type 1 (CB1R) exon1 and additional CB1R functions, which could promote memory deficits in animal models of fetal alcohol spectrum disorder.
The significant consequences of ethanol use during pregnancy are neurobehavioral abnormalities involving hippocampal and neocortex malfunctions that cause learning and memory deficits collectively named fetal alcohol spectrum disorder. However, the molecular mechanisms underlying these abnormalities are still poorly understood and therefore warrant systematic research. Here, we document novel epigenetic abnormalities in the mouse model of fetal alcohol spectrum disorder.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2014
The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells.
View Article and Find Full Text PDFIn rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH).
View Article and Find Full Text PDFThe 3' end formation of mammalian pre-mRNA contributes to gene expression regulation by setting the downstream boundary of the 3' untranslated region, which in many genes carries regulatory sequences. A large number of protein cleavage factors participate in this pre-mRNA processing step, but chemical tools to manipulate this process are lacking. Guided by a hypothesis that a PPM1 family phosphatase negatively regulates the 3' cleavage reaction, we have found a variety of new small molecule activators of the in vitro reconstituted pre-mRNA 3' cleavage reaction.
View Article and Find Full Text PDFGlycan array analysis of Sclerotium rolfsii lectin (SRL) revealed its exquisite binding specificity to the oncofetal Thomsen-Friedenreich (Galβ1-3GalNAcα-O-Ser/Thr, T or TF) antigen and its derivatives. This study shows that SRL strongly inhibits the growth of human colon cancer HT29 and DLD-1 cells by binding to cell surface glycans and induction of apoptosis through both the caspase-8 and -9 mediated signaling. SRL showed no or very weak binding to normal human colon tissues but strong binding to cancerous and metastatic tissues.
View Article and Find Full Text PDFWe earlier reported the mitogenic and immunostimulatory activities of Rhizoctonia bataticola lectin (RBL), purified from phytopathogenic fungus R. bataticola in human PBMC. The lectin demonstrates specificity towards glycoproteins containing complex N-glycans.
View Article and Find Full Text PDFBackground: Rhizoctonia bataticola lectin (RBL), purified from phytopathogenic fungus Rhizoctonia bataticola is highly mitogenic towards human peripheral blood mononuclear cells (PBMC). The lectin has sugar specificity towards N-glycans and binds to glycoproteins containing complex N-glycans (Nagre et al., Glycoconj J.
View Article and Find Full Text PDFA lectin with strong mitogenic activity towards human peripheral blood mononuclear cells (PBMCs) and cytotoxic effect on human ovarian cancer cells has been purified from the mycelium of a phytopathogenic fungus, Rhizoctonia bataticola, using ion exchange chromatography and affinity chromatography on asialofetuin-Sepharose. The lectin, termed RBL, is a tetramer of 11-kDa subunits and has unique amino acid sequence at its blocked N-terminus. The purified RBL was blood group nonspecific and its hemagglutination activity was inhibited by mucin (porcine stomach), fetuin (fetal calf serum) and asialofetuin.
View Article and Find Full Text PDFA mannose-binding lectin (RVL) was purified from the tubers of Remusatia vivipara, a monocot plant by single-step affinity chromatography on asialofetuin-Sepharose 4B. RVL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, asialofetuin and thyroglobulin. Lectin activity was stable up to 80 degrees C and under wide range of pH (2.
View Article and Find Full Text PDF