Publications by authors named "Nagaosa N"

Quantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions.

View Article and Find Full Text PDF

Excitons are fundamental quasiparticles that are ubiquitous in photoexcited semiconductors and insulators. Despite causing a sharp and strong photoabsorption near the interband absorption edge, charge-neutral excitons do not yield photocurrent in conventional photovoltaic processes unless dissociated into free charge carriers. Here, we experimentally demonstrate that excitons can directly contribute to photocurrent generation through a nonlinear light-matter interaction in a noncentrosymmetric semiconductor CuI.

View Article and Find Full Text PDF

The Hall effect of topological quantum materials often reveals essential new physics and possesses potential for application. The magnetic Weyl semimetal is one especially interesting example that hosts an interplay between the spontaneous time-reversal symmetry-breaking topology and the external magnetic field. However, it is less known beyond the anomalous Hall effect thereof, which is unable to account for plenty of magnetotransport measurements.

View Article and Find Full Text PDF

Nonlinear transport phenomena in condensed matter reflect the geometric nature, quantum coherence, and many-body correlation of electronic states. Electric currents in solids are classified into (i) ohmic current, (ii) supercurrent, and (iii) geometric or topological current. While the nonlinear current-voltage (-) characteristics of the former two categories have been extensive research topics recently, those of the last category remains unexplored.

View Article and Find Full Text PDF

The Majorana fermion offers fascinating possibilities such as non-Abelian statistics and nonlocal robust qubits, and hunting it is one of the most important topics in current condensed matter physics. Most of the efforts have been focused on the Majorana bound state at zero energy in terms of scanning tunneling spectroscopy searching for the quantized conductance. On the other hand, a chiral Majorana edge channel appears at the surface of a three-dimensional topological insulator when engineering an interface between proximity-induced superconductivity and ferromagnetism.

View Article and Find Full Text PDF

The coupling of conduction electrons and magnetic textures leads to quantum transport phenomena described by the language of emergent electromagnetic fields. For magnetic skyrmions, spin-swirling particle-like objects, an emergent magnetic field is produced by their topological winding, resulting in the conduction electrons exhibiting the topological Hall effect (THE). When the skyrmion lattice (SkL) acquires a drift velocity under conduction electron flow, an emergent electric field is also generated.

View Article and Find Full Text PDF

The skyrmion crystal (SkX) and helix (HL) phases, present in typical chiral magnets, can each be considered as forms of density waves but with distinct topologies. The SkX exhibits gyrodynamics analogous to electrons under a magnetic field, while the HL state resembles topological trivial spin density waves. However, unlike the charge density waves, the theoretical analysis of the sliding motion of SkX and HL remains unclear, especially regarding the similarities and differences in sliding dynamics between these two spin density waves.

View Article and Find Full Text PDF

Current-driven dynamics of topological spin textures, such as skyrmions and antiskyrmions, have garnered considerable attention in condensed matter physics and spintronics. As compared with skyrmions, the current-driven dynamics of their antiparticles - antiskyrmions - remain less explored due to the increased complexity of antiskyrmions. Here, we design and employ fabricated microdevices of a prototypical antiskyrmion host, (FeNiPd)P, to allow in situ current application with Lorentz transmission electron microscopy observations.

View Article and Find Full Text PDF
Article Synopsis
  • Research focuses on controlling the visibility of antiferromagnetic 180° domains using second-harmonic generation (SHG) in materials like MnPS.
  • The study demonstrates how applying an in-plane electric field can enhance domain contrast by altering the material's magnetic properties and interactions between different types of transitions.
  • This innovative approach could lead to faster electrical modulation of photonic behaviors in antiferromagnets, with potential applications in advanced technologies.
View Article and Find Full Text PDF

In two-dimensional systems, perpendicular magnetic fields can induce a bulk band gap and chiral edge states, which gives rise to the quantum Hall effect. The quantum Hall effect is characterized by zero longitudinal resistance (R) and Hall resistance (R) plateaus quantized to h/(υe) in the linear response regime, where υ is the Landau level filling factor, e is the elementary charge and h is Planck's constant. Here we explore the nonlinear response of monolayer graphene when tuned to a quantum Hall state.

View Article and Find Full Text PDF

Direct conversion from terahertz photon to charge current is a key phenomenon for terahertz photonics. Quantum geometrical description of optical processes in crystalline solids predicts existence of field-unbiased dc photocurrent arising from terahertz-light generation of magnetic excitations in multiferroics, potentially leading to fast and energy-efficient terahertz devices. Here, we demonstrate the dc charge current generation from terahertz magnetic excitations in multiferroic perovskite manganites with spin-driven ferroelectricity, while keeping an insulating state with no free carrier.

View Article and Find Full Text PDF

Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional CaCoO. This material crystallizes with alternating stacking of oxygen tetrahedral CoO monolayers and octahedral CoO bilayers.

View Article and Find Full Text PDF

Vortex rings are ubiquitous topological structures in nature. In solid magnetic systems, their formation leads to intriguing physical phenomena and potential device applications. However, realizing these topological magnetic vortex rings and manipulating their topology on demand have still been challenging.

View Article and Find Full Text PDF

Recently, the intriguing phenomenon of emergent inductance has been theoretically proposed and experimentally observed in nanoscale spiral spin systems subjected to oscillating currents. Building upon these recent developments, we put forward the concept of emergent inductance in strongly correlated magnets in the normal state with spin fluctuations. It is argued that the inductance shows a positive peak at temperatures above the ordering temperature.

View Article and Find Full Text PDF

Weyl semimetal showing open-arc surface states is a prominent example of topological quantum matter in three dimensions. With the bulk-boundary correspondence present, nontrivial surface-bulk hybridization is inevitable but less understood. Spectroscopies have been often limited to verifying the existence of surface Fermi arcs, whereas its spectral shape related to the hybridization profile in energy-momentum space is not well studied.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the thermal Hall effect in the distorted trimerized triangular lattice of the multiferroic material YMnO, highlighting its unique characteristics compared to typical systems like the kagome lattice.
  • The research reveals that the thermal Hall conductivity is linked to the splitting of chiralities in the magnetic structure, showcasing a surprising relationship between topology and spin interactions.
  • This finding sheds light on novel topological phenomena and the behavior of charge-neutral magnons in materials with broken symmetry, contributing to the understanding of magnetic insulators.
View Article and Find Full Text PDF

Non-Hermitian systems have been discussed mostly in the context of open systems and nonequilibrium. Recent experimental progress is much from optical, cold-atomic, and classical platforms due to the vast tunability and clear identification of observables. However, their counterpart in solid-state electronic systems in equilibrium remains unmasked although highly desired, where a variety of materials are available, calculations are solidly founded, and accurate spectroscopic techniques can be applied.

View Article and Find Full Text PDF

The spin Hall effect (SHE) can generate a pure spin current by an electric current, which is promisingly used to electrically control magnetization. To reduce the power consumption of this control, a giant spin Hall angle (SHA) in the SHE is desired in low-resistivity systems for practical applications. Here, critical spin fluctuation near the antiferromagnetic (AFM) phase transition in chromium (Cr) is proven to be an effective mechanism for creating an additional part of the SHE, named the fluctuation spin Hall effect.

View Article and Find Full Text PDF

The Josephson rectification effect, where the resistance is finite in one direction while zero in the other, has been recently realized experimentally. The resulting Josephson diode has many potential applications on superconducting devices, including quantum computers. Here, we theoretically show that a superconductor-normal metal-superconductor Josephson junction diode on the two-dimensional surface of a topological insulator has large tunability.

View Article and Find Full Text PDF

The phenomenon that critical supercurrents along opposite directions become unequal is called the supercurrent diode effect (SDE). It has been observed in various systems and can often be understood by combining spin-orbit coupling and Zeeman field, which break the spatial-inversion and time-reversal symmetries, respectively. Here, we theoretically investigate another mechanism of breaking these symmetries and predict the existence of the SDE in chiral nanotubes without spin-orbit coupling.

View Article and Find Full Text PDF

Dynamical spin fluctuations in magnets can be endowed with a slight bent toward left- or right-handed chirality by Dzyaloshinskii-Moriya interactions. However, little is known about the crucial role of lattice geometry on these chiral spin fluctuations and on fluctuation-related transport anomalies driven by the quantum-mechanical (Berry) phase of conduction electrons. Via thermoelectric Nernst effect and electric Hall effect experiments, we detect chiral spin fluctuations in the paramagnetic regime of a kagome lattice magnet; these signals are largely absent in a comparable triangular lattice magnet.

View Article and Find Full Text PDF

Correlated states have emerged in low-dimensional systems owing to enhanced Coulomb interactions. Elucidating these states requires atomic-scale characterization and delicate control capabilities. Herein, spectroscopic imaging-scanning tunneling microscopy was employed to investigate the correlated states residing in 1D electrons of the monolayer and bilayer MoSe mirror twin boundary (MTB).

View Article and Find Full Text PDF