Publications by authors named "Nagammal Neelagandan"

Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in deletion models.

View Article and Find Full Text PDF

To adapt mitochondrial function to the ever-changing intra- and extracellular environment, multiple mitochondrial stress response (MSR) pathways, including the mitochondrial unfolded protein response (UPRmt), have evolved. However, how the mitochondrial stress signal is sensed and relayed to UPRmt transcription factors, such as ATFS-1 in Caenorhabditis elegans, remains largely unknown. Here, we show that a panel of vacuolar H+-ATPase (v-ATPase) subunits and the target of rapamycin complex 1 (TORC1) activity are essential for the cytosolic relay of mitochondrial stress to ATFS-1 and for the induction of the UPRmt.

View Article and Find Full Text PDF

In the neocortex, functionally distinct areas process specific types of information. Area identity is established by morphogens and transcriptional master regulators, but downstream mechanisms driving area-specific neuronal specification remain unclear. Here, we reveal a role for RNA-binding proteins in defining area-specific cytoarchitecture.

View Article and Find Full Text PDF

Protein synthesis from mRNA is an energy-intensive and tightly controlled cellular process. Translation elongation is a well-coordinated, multifactorial step in translation that undergoes dynamic regulation owing to cellular state and environmental determinants. Recent studies involving genome-wide approaches have uncovered some crucial aspects of translation elongation including the mRNA itself and the nascent polypeptide chain.

View Article and Find Full Text PDF

Translation depends on messenger RNA (mRNA)-specific initiation, elongation, and termination rates. While translation elongation is well studied in bacteria and yeast, less is known in higher eukaryotes. Here we combined ribosome and transfer RNA (tRNA) profiling to investigate the relations between translation elongation rates, (aminoacyl-) tRNA levels, and codon usage in mammals.

View Article and Find Full Text PDF

Protein synthesis is crucial for maintaining synaptic plasticity and synaptic signalling. Here we have attempted to understand the role of RNA binding proteins, Fragile X Mental Retardation Protein (FMRP) and Moloney Leukemia Virus 10 (MOV10) protein in N-Methyl-D-Aspartate Receptor (NMDAR) mediated translation regulation. We show that FMRP is required for translation downstream of NMDAR stimulation and MOV10 is the key specificity factor in this process.

View Article and Find Full Text PDF

The RNA-binding protein TDP-43 is heavily implicated in neurodegenerative disease. Numerous patient mutations in TARDBP, the gene encoding TDP-43, combined with data from animal and cell-based models, imply that altered RNA regulation by TDP-43 causes Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. However, underlying mechanisms remain unresolved.

View Article and Find Full Text PDF