Publications by authors named "Nagamma Patil"

COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process.

View Article and Find Full Text PDF

Visual inspection of peripheral blood samples is a critical step in the leukemia diagnostic process. Automated solutions based on artificial vision approaches can accelerate this procedure, while also improving accuracy and uniformity of response in telemedicine applications. In this study, we propose a novel GBHSV-Leuk method to segment and classify Acute Lymphoblastic Leukemia (ALL) cancer cells.

View Article and Find Full Text PDF

Chloroplast is one of the most classic organelles in algae and plant cells. Identifying the locations of chloroplast proteins in the chloroplast organelle is an important as well as a challenging task in deciphering their functions. Biological-based experiments to identify the Protein Sub-Chloroplast Localization (PSCL) is time-consuming and cost-intensive.

View Article and Find Full Text PDF

The protein fold recognition is one of the important tasks of structural biology, which helps in addressing further challenges like predicting the protein tertiary structures and its functions. Many machine learning works are published to identify the protein folds effectively. However, very few works have reported the fold recognition accuracy above 80% on benchmark datasets.

View Article and Find Full Text PDF

Aligning more than two biological sequences is termed multiple sequence alignment (MSA). To analyze biological sequences, MSA is one of the primary activities with potential applications in phylogenetics, homology markers, protein structure prediction, gene regulation, and drug discovery. MSA problem is considered as NP-complete.

View Article and Find Full Text PDF

Protein Secondary Structural Class (PSSC) information is important in investigating further challenges of protein sequences like protein fold recognition, protein tertiary structure prediction, and analysis of protein functions for drug discovery. Identification of PSSC using biological methods is time-consuming and cost-intensive. Several computational models have been developed to predict the structural class; however, they lack in generalization of the model.

View Article and Find Full Text PDF