NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines.
View Article and Find Full Text PDFCytosolic innate immune sensors are critical for host defense and form complexes, such as inflammasomes and PANoptosomes, that induce inflammatory cell death. The sensor NLRP12 is associated with infectious and inflammatory diseases, but its activating triggers and roles in cell death and inflammation remain unclear. Here, we discovered that NLRP12 drives inflammasome and PANoptosome activation, cell death, and inflammation in response to heme plus PAMPs or TNF.
View Article and Find Full Text PDFInnate immunity is the first response to protect against pathogens and cellular insults. Pattern recognition receptors sense pathogen- and damage-associated molecular patterns and induce an innate immune response characterized by inflammation and programmed cell death (PCD). In-depth characterization of innate immune PCD pathways has highlighted significant cross-talk.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), continues to cause substantial morbidity and mortality in the ongoing global pandemic. Understanding the fundamental mechanisms that govern innate immune and inflammatory responses during SARS-CoV-2 infection is critical for developing effective therapeutic strategies. Whereas interferon (IFN)-based therapies are generally expected to be beneficial during viral infection, clinical trials in COVID-19 have shown limited efficacy and potential detrimental effects of IFN treatment during SARS-CoV-2 infection.
View Article and Find Full Text PDFExperimental and clinical therapies in the field of Alzheimer's disease (AD) have focused on elimination of extracellular amyloid beta aggregates or prevention of cytoplasmic neuronal fibrillary tangles formation, yet these approaches have been generally ineffective. Interruption of nuclear lamina integrity, or laminopathy, is a newly identified concept in AD pathophysiology. Unraveling the molecular players in the induction of nuclear lamina damage may lead to identification of new therapies.
View Article and Find Full Text PDFFerroptosis is a necrotic form of cell death caused by inactivation of the glutathione system and uncontrolled iron-mediated lipid peroxidation. Increasing evidence implicates ferroptosis in a wide range of diseases from neurotrauma to cancer, highlighting the importance of identifying an executioner system that can be exploited for clinical applications. In this study, using pharmacological and genetic models of ferroptosis, we observed that lysosomal membrane permeabilization and cytoplasmic leakage of cathepsin B unleashes structural and functional changes in mitochondria and promotes a not previously reported cleavage of histone H3.
View Article and Find Full Text PDFLysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients.
View Article and Find Full Text PDFTraumatic spinal cord injury (SCI) elicits a cascade of secondary injury mechanisms that induce profound changes in glia and neurons resulting in their activation, injury or cell death. The resultant imbalanced microenvironment of acute SCI also negatively impacts regenerative processes in the injured spinal cord. Thus, it is imperative to uncover endogenous mechanisms that drive these acute injury events.
View Article and Find Full Text PDFOxidative stress has been hypothesized to play a role in the pathophysiology of Alzheimer's disease (AD). Previously, we found that total nitrosylated protein levels were increased in the brain of amyloid-β protein precursor (AβPP) and presenilin 1 (PS1) double transgenic mice, an animal model for AD, suggesting that cysteine oxidative protein modification may contribute to this disease. Thioredoxin (Trx) is a major oxidoreductase that can reverse cysteine oxidative modifications such as sulfenylation and nitrosylation, and inhibit oxidative stress.
View Article and Find Full Text PDFRecent reports in pathophysiology of neurodegenerative diseases (ND) have linked nuclear lamina degradation/deficits to neuronal cell death. Lamin-B1 damage is specifically involved in this process leading to nuclear envelope invagination and heterochromatin rearrangement. The underlying mechanisms involved in these events are not yet defined.
View Article and Find Full Text PDFThe involvement of glutamate in neuronal cell death in neurodegenerative diseases and neurotrauma is mediated through excitotoxicity or oxytosis. The latter process induces oxidative stress via glutamate-mediated inhibition of cysteine transporter xCT, leading to depletion of the cellular glutathione pool. Mitochondrial damage, loss of mitochondrial membrane potential (MMP), and depletion of energy metabolites have been shown in this process.
View Article and Find Full Text PDFPrevious studies have shown that chronic stress and chronic stress hormone treatment induce oxidative damage in rodents. Thioredoxin (Trx) is a small redox protein that plays an important role in regulation of oxidative protein cysteine modification. A Trx reduced state is maintained by thioredoxin reductase (TrxR), and the thioredoxin-interacting protein (Txnip) is an endogenous inhibitor of Trx.
View Article and Find Full Text PDFReactive oxygen species (ROS) are essential for induction of protective autophagy, however unexpected rise in cellular ROS levels overpowers the cellular defense and therefore promotes the programmed apoptotic cell death. We recently reported that inhibition of thioredoxin reductase (TrxR) in starving SH-SY5Y cells interrupted autophagy flux by induction of lysosomal deficiency and promoted apoptosis. (Free Radic Biol Med.
View Article and Find Full Text PDFThe mevalonate (MEV) cascade is responsible for cholesterol biosynthesis and the formation of the intermediate metabolites geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) used in the prenylation of proteins. Here we show that the MEV cascade inhibitor simvastatin induced significant cell death in a wide range of human tumor cell lines, including glioblastoma, astrocytoma, neuroblastoma, lung adenocarcinoma, and breast cancer. Simvastatin induced apoptotic cell death via the intrinsic apoptotic pathway.
View Article and Find Full Text PDFOxidative damage and aggregation of cellular proteins is a hallmark of neuronal cell death after neurotrauma and chronic neurodegenerative conditions. Autophagy and ubiquitin protease system are involved in degradation of protein aggregates, and interruption of their function is linked to apoptotic cell death in these diseases. Oxidative modification of cysteine groups in key molecular proteins has been linked to modification of cellular systems and cell death in these conditions.
View Article and Find Full Text PDFThe mevalonate pathway has been extensively studied for its involvement in cholesterol synthesis. Inhibition of this pathway using statins (3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors; HMGR inhibitors) is the primarily selected method due to its cholesterol-lowering effect, making statins the most commonly used (86-94%) cholesterol-lowering drugs in adults. This pathway has several other by-products that are affected by statins including GTPase molecules (guanine triphosphate-binding kinases), such as Rho/Rho-associated coiled kinase (ROCK) kinases, that are implicated in other diseases, including those of the central nervous system (CNS).
View Article and Find Full Text PDFOxidative stress (OS) and nitric oxide mechanisms have been recently proposed in 3-nitropropionic acid (3-NP)-induced neurotoxicity. The compounds, having antioxidant, anti-inflammatory and estrogenic effects, have been suggested for neuroprotection in different experimental models. Calendula officinalis Linn.
View Article and Find Full Text PDFMonosodium glutamate (MSG) is commonly used as a flavor enhancer in many countries. However, overconsumption of MSG has been reported to produce detrimental effects on several organs. It mainly affects the normal physiology and function of the brain and causes severe oxidative stress.
View Article and Find Full Text PDFN-methyl-D-aspartate (NMDA) antagonists and γ-aminobutyric acid (GABA) agonists are proven protective in various animal models of ischemic brain damage. Tramadol, a centrally acting opioid analgesic reportedly possesses NMDA antagonistic and GABA agonistic properties, with additional ion channel blocking activity. The aim of the present study was to evaluate the possible neuroprotective effect of tramadol hydrochloride in a rat model of transient forebrain ischemia.
View Article and Find Full Text PDFObjective: The aim of the present study was to evaluate the sedative and antiepileptic activities of ethanolic extract of Anthocephalus cadamba (ACE) bark in various experimental animal models.
Materials And Methods: ACE was tested at three doses viz. 100, 200 and 400 mg/kg p.