Anticancer Agents Med Chem
June 2017
High grade gliomas (HGGs) are primary CNS cancers with more than 95% of patients experiencing tumor recurrence following radiation therapy, chemotherapy, and/or an anti-angiogenic therapy. Populations of glioma 'stem-like' cells (GSCs) exist in both proliferative and non-proliferative states and are capable of tumor regrowth. These GSCs survive within hypoxic tumor regions and avascular tumor margins, while retaining the capability to regenerate.
View Article and Find Full Text PDF5-Benzylglycinyl-amiloride (UCD38B) is the parent molecule of a class of anticancer small molecules that kill proliferative and nonproliferative high-grade glioma cells by programmed necrosis. UCD38B intracellularly triggers endocytosis, causing 40-50% of endosomes containing proteins of the urokinase plasminogen activator system (uPAS) to relocate to perinuclear mitochondrial regions. Endosomal "mis-trafficking" caused by UCD38B in human glioma cells corresponds to mitochondrial depolarization with the release and nuclear translocation of apoptotis-inducing factor (AIF) followed by irreversible caspase-independent cell demise.
View Article and Find Full Text PDFNeuropathic pain is a maladaptive immune response to peripheral nerve injury that causes a chronic painful condition refractory to most analgesics. Nitric oxide (NO), which is produced by nitric oxide synthases (NOSs), has been implicated as a key factor in the pathogenesis of neuropathic pain. β-Carbolines are a large group of natural and synthetic indole alkaloids, some of which block activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), a predominant transcriptional regulator of NOS expression.
View Article and Find Full Text PDFAmiloride is a potassium-sparing diuretic that has been used as an anti-kaliuretic for the chronic management of hypertension and heart failure. Several studies have identified a potential anti-cancer role for amiloride, however the mechanisms underlying its anti-tumor effects remain to be fully delineated. Our group previously demonstrated that amiloride triggers caspase-independent cytotoxic cell death in human glioblastoma cell lines but not in primary astrocytes.
View Article and Find Full Text PDF5'-Βenzylglycinyl-amiloride (UCD38B) and glycinyl-amiloride (UCD74A) are cell-permeant and cell-impermeant derivatives of amiloride, respectively, and used here to identify the cellular mechanisms of action underlying their antiglioma effects. UCD38B comparably kills proliferating and nonproliferating gliomas cells when cell cycle progression is arrested either by cyclin D1 siRNA or by acidification. Cell impermeant UCD74A inhibits plasmalemmal urokinase plasminogen activator (uPA) and the type 1 sodium-proton exchanger with potencies analogous to UCD38B, but is cytostatic.
View Article and Find Full Text PDFThe relative non-toxicity of the diuretic amiloride, coupled with its selective inhibition of the protease urokinase plasminogen activator (uPA), makes this compound class attractive for structure-activity studies. Herein we substituted the C(2)-acylguanidine of C(5)-glycyl-amiloride with amidine and amidoxime groups. The data show the importance of maintaining C(5)-hydrophobicity.
View Article and Find Full Text PDFMethylglyoxal (MGO) is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function.
View Article and Find Full Text PDFα-Crystallin is a major protein in the human lens that is perceived to help to maintain the transparency of the lens through its chaperone function. In this study, we demonstrate that many lens proteins including αA-crystallin are acetylated in vivo. We found that K70 and K99 in αA-crystallin and, K92 and K166 in αB-crystallin are acetylated in the human lens.
View Article and Find Full Text PDFThe small heat shock protein Hsp27 is a molecular chaperone and an anti-apoptotic protein. Human Hsp27 has one cysteine residue at position 137. We investigated the role of this cysteine residue in the chaperone and anti-apoptotic functions of Hsp27 by mutating the cysteine residue to an alanine (Hsp27(C137A)) and comparing it to wild-type protein (Hsp27(WT)).
View Article and Find Full Text PDFQuiescent muscle progenitors called satellite cells persist in adult skeletal muscle and, upon injury to muscle, re-enter the cell cycle and either undergo self-renewal or differentiate to regenerate lost myofibers. Using synchronized cultures of C2C12 myoblasts to model these divergent programs, we show that p8 (also known as Nupr1), a G1-induced gene, negatively regulates the cell cycle and promotes myogenic differentiation. p8 is a small chromatin protein related to the high mobility group (HMG) family of architectural factors and binds to histone acetyltransferase p300 (p300, also known as CBP).
View Article and Find Full Text PDFGlyoxalase I (GLOI) is the first enzyme of the glyoxalase system that catalyzes the metabolism of reactive dicarbonyls, such as methylglyoxal (MGO). During aging and cataract development, human lens proteins are chemically modified by MGO, which is likely due to inadequate metabolism of MGO by the glyoxalase system. In this study, we have determined the effect of aging on GLOI activity and the immunoreactivity and morphological distribution of GLOI in the human lens.
View Article and Find Full Text PDFWe have previously demonstrated that the reaction of a physiological dicarbonyl, methylglyoxal (MGO) enhances the chaperone function of human alpha A-crystallin. MGO can react with cysteine, arginine, and lysine residues in proteins. Although the role of arginine and lysine residues in the enhancement of chaperone function has been investigated, the role of cysteine residues is yet to be determined.
View Article and Find Full Text PDF