Publications by authors named "Naga V G Jayanthi"

Background: Severe, drug-resistant gastroparesis is a debilitating condition. Several, but not all, patients can get significant relief from nausea and vomiting by gastric electrical stimulation (GES). A trial of temporary, endoscopically delivered GES may be of predictive value to select patients for laparoscopic-implantation of a permanent GES device.

View Article and Find Full Text PDF

Increasing number of gastrointestinal emergencies are managed laparoscopically. Laparoscopic repair of a perforated peptic ulcer remains contentious. Fashioning an omental patch is a crucial and an essential part of this repair, whether it is performed open or laparoscopically.

View Article and Find Full Text PDF

Background/purpose: Potential for curative stem-cell treatments of juvenile-onset diabetes has focussed research into pancreatic islet development. Islets were previously thought to originate solely from embryonic pancreatic epithelium, but we have demonstrated that islets can originate from mesenchyme, that is, islet mesenchyme-to-epithelial transition. The aim of this study was to establish the competence of foregut mesenchyme during mesenchymal islet development.

View Article and Find Full Text PDF

According to the Hagen-Poiseuille's law, rate of laminar flow through a tubular structure varies directly with fourth power of its radius and inversely with its length. Although it is well recognised that faster infusion rates can be achieved with wider-bore IV cannulae, the effect of length on flow rates is less well known. In the current in vitro study, we assessed the effect of length of an IV cannula on the rate of flow of infusion.

View Article and Find Full Text PDF

To understand causes of developmental abnormalities of the pancreas, it is essential to understand its normal embryonic development. Current understanding of the development of pancreatic exocrine tissue is that it develops solely from embryonic epithelium, while the role of the surrounding mesenchyme is to signal to this epithelium and form connective tissue. Recent work in our laboratory has shown that pancreatic bud mesenchyme can contribute cells to islets during embryonic development.

View Article and Find Full Text PDF