Publications by authors named "Nafiseh Poornejad"

The manuscript 'Efficient decellularization of whole porcine kidneys improves reseeded cell behavior' (Poornejad et al 2016 Biomedical Materials 11: 025003) describes our efforts to improve the process for recellularization of porcine kidneys. We obtained what we believed to be an immortalized cell line of human renal cortical tubular epithelium (RCTE) cells from the Feinberg School of Medicine, Northwestern University to conduct our reseeding experiments. The RCTE cells that were provided to us were later discovered to actually be Madin-Darby Canine Kidney (MDCK) epithelial cells.

View Article and Find Full Text PDF

Decellularized porcine kidneys were recellularized with renal epithelial cells by three methods: perfusion through the vasculature under high pressure, perfusion through the ureter under high pressure, or perfusion through the ureter under moderate vacuum. Histology, scanning electron microscopy, confocal microscopy, and magnetic resonance imaging were used to assess vasculature preservation and the distribution of cells throughout the kidneys. Cells were detected in the magnetic resonance imaging by labeling them with iron oxide.

View Article and Find Full Text PDF

The combination of patient-specific cells with scaffolds obtained from natural sources may result in improved regeneration of human tissues. Decellularization of the native tissue is the first step in this technology. Effective decellularization uses agents that lyse cells and remove all cellular materials, leaving intact collagenous extracellular matrices (ECMs).

View Article and Find Full Text PDF

Developing patient-specific transplantable organs is a promising response to the increasing need of more effective therapies for patients with organ failure. Advances in tissue engineering strategies have demonstrated favorable results, including the use of decellularized hearts as scaffolds for cardiac engineering; however, there is a need to establish methods to characterize the cytotoxicity and blood compatibility of cardiac extracellular matrix (cECM) scaffolds created by decellularization. In this study, porcine hearts were decellularized in an automated perfusion apparatus utilizing sodium dodecyl sulfate (SDS) detergent.

View Article and Find Full Text PDF

Combining patient-specific cells with the appropriate scaffold to create functional kidneys is a promising technology to provide immunocompatible kidneys for the 100,000+ patients on the organ waiting list. For proper recellularization to occur, the scaffold must possess the critical microstructure and an intact vascular network. Detergent perfusion through the vasculature of a kidney is the preferred method of decellularization; however, harsh detergents could be damaging to the microstructure of the renal tissue and may undesirably solubilize the endogenous growth and signaling factors.

View Article and Find Full Text PDF

Chronic kidney diseases affect thousands of people worldwide. Although hemodialysis alleviates the situation by filtering the patient's blood, it does not replace other kidney functions such as hormone release or homeostasis regulation. Consequently, orthotopic transplantation of donor organs is the ultimate treatment for patients suffering from end-stage renal failure.

View Article and Find Full Text PDF

Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix.

View Article and Find Full Text PDF

Whole heart decellularization combined with patient-specific cells may prove to be an extremely valuable approach to engineer new hearts. Mild detergents are commonly used in the decellularization process, but are known to denature and solubilize key proteins and growth factors and can therefore be destructive to the extracellular matrix (ECM) during the decellularization process. In this study, the decellularization of porcine hearts was accomplished in 24 h with only 6 h of sodium dodecyl sulfate exposure and 98% DNA removal.

View Article and Find Full Text PDF

Whole organ decellularization of porcine renal tissue and recellularization with a patient's own cells would potentially overcome immunorejection, which is one of the most significant problems with allogeneic kidney transplantation. However, there are obstacles to achieving this goal, including preservation of the decellularized extracellular matrix (ECM), identifying the proper cell types, and repopulating the ECM before transplantation. Freezing biological tissue is the best option to avoid spoilage; however, it may damage the structure of the tissue or disrupt cellular membranes through ice crystal formation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionte2g4de3pvrjgmuk9ek20q71g29jt2q0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once