Publications by authors named "Naeye B"

This study aims at developing chitosan-based nanoparticles suitable for an intravenous administration of small interfering RNA (siRNA) able to achieve (i) high gene silencing without cytotoxicity and (ii) stability in biological media including blood. Therefore, the influence of chitosan/tripolyphosphate ratio, chitosan physicochemical properties, PEGylation of chitosan as well as the addition of an endosomal disrupting agent and a negatively charged polymer was assessed. The gene silencing activity and cytotoxicity were evaluated on B16 melanoma cells expressing luciferase.

View Article and Find Full Text PDF

Intravenous administration of siRNA nanocarriers may provide unique therapeutic opportunities for tissue-specific gene silencing. Although often engineered to overcome the numerous barriers that exist in the systemic circulation, many nanocarriers fail in extending the circulation time of the siRNA. A more detailed assessment of the different clearance mechanisms that are in play after intravenous injection could therefore be of value to improve siRNA nanocarrier design.

View Article and Find Full Text PDF

Over the last decade, considerable effort has been put in the implementation of RNA interference (RNAi) as a treatment for various disorders. As RNAi occurs in the cytoplasm of cells, it is imperative that RNAi mediators such as small interfering RNA (siRNA) cross several extracellular and intracellular barriers to reach this site of action. Among the extensive range of proposed delivery systems for siRNA, matrix systems possess interesting properties to promote the delivery of siRNA to a target tissue.

View Article and Find Full Text PDF

Purpose: Tumor necrosis factor α (TNF-α) plays a key role in the progression of rheumatoid arthritis and is an important target for anti-rheumatic therapies. TNF-α expression can be silenced with small interfering RNA (siRNA), but efficacy is dependent on efficient and safe siRNA delivery vehicles. We aimed to identify polymeric nanocarriers for anti-TNF-α siRNA with optimal efficacy and minimal off-target effects in vitro.

View Article and Find Full Text PDF

Although the behavior of nanoscopic delivery systems in blood is an important parameter when contemplating their intravenous injection, this aspect is often poorly investigated when advancing from in vitro to in vivo experiments. In this paper, the behavior of siRNA loaded dextran nanogels in human plasma and blood is examined using fluorescence fluctuation spectroscopy, platelet aggregometry, flow cytometry and single particle tracking. Our results show that, in contrast to their negatively charged counterparts, positively charged siRNA loaded dextran nanogels cause platelet aggregation and show increased binding to human blood cells.

View Article and Find Full Text PDF

A great deal of attention in biopharmacy and pharmaceutical technology is going to the development of nanoscopic particles to efficiently deliver nucleic acids to target cells. Despite the great potential of nucleic acids for treatment of various diseases, progress in the field is fairly slow. One of the causes is that development of suitable nanoscopic delivery vehicles is hampered by insufficient knowledge of their physicochemical and biophysical properties during the various phases of the transfection process.

View Article and Find Full Text PDF

Delivering intact small interfering RNA (siRNA) into the cytoplasm of targeted cells in vivo is considered a major obstacle in the development of clinically applicable RNA interference-based therapies. Although dextran hydroxyethyl methacrylate (dex-HEMA) nanogels have been reported to be suitable carriers for siRNA delivery in vitro, and are ideally sized (approximately 180 nm) for intravenous delivery to tumors, they likely possess insufficient blood circulation times to enable an adequate extravasation and accumulation in the tumor tissue. PEGylation of these nanogels should not only improve their circulation time but also minimize their aggregation upon intravenous injection.

View Article and Find Full Text PDF

Small interfering RNAs (siRNAs) show potential for the treatment of a wide variety of pathologies with a known genetic origin through sequence-specific gene silencing. However, siRNAs do not have favorable drug-like properties and need to be packaged into nanoscopic carriers that are designed to guide the siRNA to the cytoplasm of the target cell. In this report biodegradable cationic dextran nanogels are used to deliver siRNA across the intracellular barriers.

View Article and Find Full Text PDF