Despite attractive cost-effectiveness, scalability, and superior stability, carbon-based printable perovskite solar cells (CPSCs) still face moisture-induced degradation that limits their lifespan and commercial potential. Here, the moisture-preventing mechanisms of thin nanostructured super-repellent coating (advancing contact angle >167° and contact angle hysteresis 7°) integrated into CPSCs are investigated for different moisture forms (falling water droplets vs water vapor vs condensed water droplets). It is shown that unencapsulated super-repellent CPSCs have superior performance under continuous droplet impact for 12 h (rain falling experiments) compared to unencapsulated pristine (uncoated) CPSCs that degrade within seconds.
View Article and Find Full Text PDFGraphene, a wonder material, has made far-reaching developments in many different fields such as materials science, electronics, condensed physics, quantum physics, energy systems, etc. Since its discovery in 2004, extensive studies have been done for understanding its physical and chemical properties. Owing to its unique characteristics, it has rapidly became a potential candidate for nano-bio researchers to explore its usage in biomedical applications.
View Article and Find Full Text PDFDimensional engineering of perovskite solar cells has attracted significant research attention recently because of the potential to improve both device performance and stability. Here, a novel 2D passivation scheme for 3D perovskite solar cells is demonstrated using a mixed cation composition of 2D perovskite based on two different isomers of butylammonium iodide. The dual-cation 2D perovskite outperforms its single cation 2D counterparts in surface passivation quality, resulting in devices with an impressive open-circuit voltage of 1.
View Article and Find Full Text PDF