Publications by authors named "Nadzeya Kouzel"

Bacterial type 4 pili (T4P) are extracellular polymers that initiate the formation of microcolonies and biofilms. T4P continuously elongate and retract. These pilus dynamics crucially affect the local order, shape, and fluidity of microcolonies.

View Article and Find Full Text PDF

Cellular positioning towards the surface of bacterial colonies and biofilms can enhance dispersal, provide a selective advantage due to increased nutrient and space availability, or shield interior cells from external stresses. Little is known about the molecular mechanisms that govern bacterial positioning. Using the type IV pilus (T4P) of Neisseria gonorrhoeae, we tested the hypothesis that the processes of phase and antigenic variation govern positioning and thus enhance bacterial fitness in expanding gonococcal colonies.

View Article and Find Full Text PDF

Bacterial biofilms can generate micro-heterogeneity in terms of surface structures. However, little is known about the associated changes in the physics of cell-cell interaction and its impact on the architecture of biofilms. In this study, we used the type IV pilus of Neisseria gonorrhoeae to test whether variation of surface structures induces cell-sorting.

View Article and Find Full Text PDF

Unlabelled: Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae.

View Article and Find Full Text PDF

Bacterial type IV pili are essential for adhesion to surfaces, motility, microcolony formation, and horizontal gene transfer in many bacterial species. These polymers are strong molecular motors that can retract at two different speeds. In the human pathogen Neisseria gonorrhoeae speed switching of single pili from 2 µm/s to 1 µm/s can be triggered by oxygen depletion.

View Article and Find Full Text PDF

Twitching motility enables bacteria to move over surfaces using type IV pili as grappling hooks. Here it is shown that the motility of the round Neisseria gonorrhoeae as well as of rod-shaped Myxococcus xanthus is guided by elevations with dimension and depth corresponding to the size of the bacteria.

View Article and Find Full Text PDF