Wastewater treatment plant (WWTP) effluents release complex mixtures of organic and inorganic micropollutants, including endocrine disrupting compounds, into receiving water bodies. These substances may cause adverse effects in aquatic communities as well as in ecosystem functions they provide. The aim of this study was to determine the potential impact of secondary treated wastewater released into a small Swiss stream on leaf litter decomposition based on feeding rates of the amphipod shredder Gammarus fossarum measured in situ.
View Article and Find Full Text PDFIntegr Environ Assess Manag
July 2017
Environmental risk assessment is an essential part of the approval process for pesticides. Exposure concentrations are compared with ecotoxicological data obtained from standardized laboratory studies and, if available, from field studies to determine the risk of a substance or formulation for aquatic communities. Predicted concentrations in surface waters are derived using, for example, the European FOrum for the Co-ordination of pesticide fate models and their USe (FOCUS) or the German Exposit models, which distinguish between exposure to dissolved and particle-associated pesticide concentrations, because the dissolved concentration is thought to be the best predictor of bioavailability and toxicity.
View Article and Find Full Text PDFIn the context of the European Water Framework Directive (WFD) it is fully recognized that pharmaceuticals can represent a relevant issue for the achievement of the good chemical and ecological status of European surface water bodies. The recent European Directive on the review of priority substances in surface water bodies has included three pharmaceuticals of widespread use (diclofenac, 17α-ethinylestradiol (EE2), 17β-estradiol (E2)) in the European monitoring list, the so-called watch list. Endocrine active pharmaceuticals such as EE2 and E2 (also occurring as natural hormone) can cause adverse effects on aquatic ecosystems at very low levels.
View Article and Find Full Text PDF