Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states to single cell and spatial omic cancer datasets.
View Article and Find Full Text PDFThe adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue. Although most previous studies have focused on the breast epithelial system, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution.
View Article and Find Full Text PDFThe adult human breast comprises an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue. While previous studies have mainly focused on the breast epithelial system, many of the non-epithelial cell types remain understudied. Here, we constructed a comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution.
View Article and Find Full Text PDFBackground: Human induced pluripotent stem cell (iPSC) models have been hailed as a breakthrough for understanding disease and developing new therapeutics. The major advantage of iPSC-derived neurons is that they carry the genetic background of the donor, and as such could be more predictive for clinical translation. However, the development of these cell models is time-consuming and expensive and it is thus critical to maximize readout of markers for immunocytochemistry.
View Article and Find Full Text PDF