The present study investigates the natural ability of Bacillus velezensis R22 to produce 2,3-BD from two inulin-rich substrates - insoluble and soluble chicory flour. After complex optimization of the media content and process parameters by consecutive application of Plackett-Burman design and response surface methodology, the strain R22 was capable of producing 71.2 g/L (95.
View Article and Find Full Text PDFThe unique fuel characteristics of butanol and the possibility of its microbial production make it one of the most desirable environmentally friendly substitutes for petroleum fuels. However, the highly toxic nature of 1-butanol to the bacterial strains makes it unprofitable for commercial production. By comparison, 2-butanol has similar fuel qualities, and despite the difficulties in its microbial synthesis, it holds promise because it may be less toxic.
View Article and Find Full Text PDF24 (BL24) is an efficient, non-pathogenic producer of 2,3-butanediol (2,3-BD). However, during inulin fermentation, the strain produces large amounts of exopolysaccharides (EPS), which interfere with the process' performance. The present study aims to investigate the effect that inactivation of the gene, encoding levansucrase in BL24, has on 2,3-BD production efficiency.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2023
R22 was isolated from a rice rhizosphere in Bulgaria. Its genome (assembled into 14 scaffolds) has a size of 4.08 Mbp and a G + C content of 46.
View Article and Find Full Text PDFis a versatile specie, well known as a producer of lactic acid (LA) and other metabolites with biotechnological significance. The present work characterizes growth and lactic acid production of the candidate-probiotic strain AC131, from Bulgarian white brined cheeses. Different nutritional media with ingredients from renewable resources-reduced sugars from dried distillers' grains with soluble (DDGS) and waste waters from the water-vapor distillation of Bulgarian L.
View Article and Find Full Text PDFThe treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora.
View Article and Find Full Text PDF