Publications by authors named "Nadja El-Mecharrafie"

To investigate the effect of incorporating bis(monoacylglycerol)phosphate (BMP) lipid into a lipid nanoparticle and the functional transport of mRNA by the formulated nanoparticles . The nanoparticles were prepared from ionizable lipid, 1,2-distearoyl--glycerol-3-phosphocholine, cholesterol, 1,2-dimyristoyl--glycerol PEG 2000, BMP and formulated mRNA encoding human erythropoietin. We measured the effect of BMP on physicochemical properties and impact on functional efficacy to transport mRNA to its target cells/tissue as measured by protein expression both and .

View Article and Find Full Text PDF

The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult tissues.

View Article and Find Full Text PDF

The reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) is usually achieved by exogenous induction of transcription by factors acting in the nucleus. In contrast, during development, signaling pathways initiated at the membrane induce differentiation. The central idea of this study is to identify antibodies that can catalyze cellular de-differentiation and nuclear reprogramming by acting at the cell surface.

View Article and Find Full Text PDF

The autophagy pathway is critical for the long-term homeostasis of cells and adult organisms and is often activated during periods of stress. Reduced pathway efficacy plays a central role in several progressive neurological disorders that are associated with the accumulation of cytotoxic peptides and protein aggregates. Previous studies have shown that genetic and transgenic alterations to the autophagy pathway impacts longevity and neural aggregate profiles of adult Drosophila.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. In addition, there has been a growing appreciation that even repetitive, milder forms of TBI (mTBI) can have long-term deleterious consequences to neural tissues. Hampering our understanding of genetic and environmental factors that influence the cellular and molecular responses to injury has been the limited availability of effective genetic model systems that could be used to identify the key genes and pathways that modulate both the acute and long-term responses to TBI.

View Article and Find Full Text PDF