Microenvironment and transcriptional plasticity generate subpopulations within the tumor, and the use of BRAF inhibitors (BRAFis) contributes to the rise and selection of resistant clones. We stochastically isolated subpopulations (C1, C2, and C3) from naïve melanoma and found that the clones demonstrated distinct morphology, phenotypic, and functional profiles: C1 was less proliferative, more migratory and invasive, less sensitive to BRAFis, less dependent on OXPHOS, more sensitive to oxidative stress, and less pigmented; C2 was more proliferative, less migratory and invasive, more sensitive to BRAFis, less sensitive to oxidative stress, and more pigmented; and C3 was less proliferative, more migratory and invasive, less sensitive to BRAFis, more dependent on OXPHOS, more sensitive to oxidative stress, and more pigmented. Hydrogen peroxide plays a central role in oxidative stress and cell signaling, and PRDXs are one of its main consumers.
View Article and Find Full Text PDFIn budding yeast, the transcriptional repressor Opi1 regulates phospholipid biosynthesis by repressing expression of genes containing inositol-sensitive upstream activation sequences. Upon genotoxic stress, cells activate the DNA damage response to coordinate a complex network of signaling pathways aimed at preserving genomic integrity. Here, we reveal that Opi1 is important to modulate transcription in response to genotoxic stress.
View Article and Find Full Text PDFThe XPC protein, which is mutated in xeroderma pigmentosum (XP) complementation group C (XP-C), is a lesion recognition factor in NER, but it has also been shown to interact with and stimulate DNA glycosylases, to act as transcriptional co-activator and on energy metabolism adaptation. We have previously demonstrated that XP-C cells show increased mitochondrial H2O2 production with a shift between respiratory complexes I and II, leading to sensitivity to mitochondrial stress. Here we report a marked decrease in expression of the transcriptional co-activator PGC-1α, a master regulator of mitochondrial biogenesis, in XP-C cells.
View Article and Find Full Text PDFMitochondrial oxidative stress accumulates with aging and age-related diseases and induces alterations in mitochondrial DNA (mtDNA) content. Since mtDNA qualitative alterations are also associated with aging, repair of mtDNA damage is of great importance. The most relevant form of DNA repair in this context is base excision repair (BER), which removes oxidized bases such as 8-oxoguanine (8-oxoG) and thymine glycol through the action of the mitochondrial isoform of the specific 8-oxoG DNA glycosylase/apurinic or apyrimidinic (AP) lyase (OGG1) or the endonuclease III homolog (NTH1).
View Article and Find Full Text PDFDNA is constantly being damaged, either by endogenous or exogenous genotoxins. In that regard, DNA repair activities are essential for maintaining genomic stability and to life itself. Mutations in genes encoding DNA repair proteins cause severe human syndromes, but DNA repair defects have also been linked to several other diseases, notably to cancer and normal aging.
View Article and Find Full Text PDFOxidative DNA damage is considered to be a major cause of neurodegeneration and internal tumors observed in syndromes that result from nucleotide excision repair (NER) deficiencies, such as Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS). Recent evidence has shown that NER aids in removing oxidized DNA damage and may interact with base excision repair (BER) enzymes. Here, we investigated APE1 and OGG1 expression, localization and activity after oxidative stress in XPC-deficient cells.
View Article and Find Full Text PDFMost human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities.
View Article and Find Full Text PDFArch Biochem Biophys
September 2014
Eumelanin is a heterogeneous polymer composed of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI). Studies have shown that DHICA promotes single strand breaks in plasmid DNA exposed to ultraviolet B radiation (UVB, 313 nm) and in DNA from human keratinocytes exposed to ultraviolet A radiation (UVA, 340-400 nm). Singlet molecular oxygen ((1)O2) is the main reactive species formed by UVA radiation on the skin.
View Article and Find Full Text PDFBenznidazole (BZ) is the most commonly used drug for the treatment of Chagas disease. Although BZ is known to induce the formation of free radicals and electrophilic metabolites within the parasite Trypanosoma cruzi, its precise mechanisms of action are still elusive. Here, we analyzed the survival of T.
View Article and Find Full Text PDFTitanium is one of the most used materials in implants and changes in its surface can modify the cellular functional response to better implant fixation. An argon plasma treatment generates a surface with improved mechanical proprieties without modifying its chemical composition. Oxidative stress induced by biomaterials is considered one of the major causes of implant failure and studies in this field are fundamental to evaluate the biocompatibility of a new material.
View Article and Find Full Text PDF