Publications by authors named "Nadine Y Crowe"

We showed previously that NKT cell-deficient TCR Jalpha18(-/-) mice are more susceptible to methylcholanthrene (MCA)-induced sarcomas, and that normal tumor surveillance can be restored by adoptive transfer of WT liver-derived NKT cells. Liver-derived NKT cells were used in these studies because of their relative abundance in this organ, and it was assumed that they were representative of NKT cells from other sites. We compared NKT cells from liver, thymus, and spleen for their ability to mediate rejection of the sarcoma cell line (MCA-1) in vivo, and found that this was a specialized function of liver-derived NKT cells.

View Article and Find Full Text PDF

Activation of NKT cells using the glycolipid alpha-galactosylceramide (alpha-GalCer) has availed many investigations into their immunoregulatory and therapeutic potential. However, it remains unclear how they respond to stimulation in vivo, which costimulatory pathways are important, and what factors (e.g.

View Article and Find Full Text PDF

An understanding of the complex interactions occurring between tumours and the immune system is a prerequisite for the rational design of effective cancer immunotherapies. To date, attention has focused mainly on the role the adaptive immune system plays in controlling tumourigenesis, with conventional T cells, which recognize peptide antigens presented by classical MHC molecules, coming under close scrutiny. Accumulating reports now suggest that an additional T-cell subset, known as CD1d-restricted natural killer T (NKT) cells, also plays a pivotal role in modulating antitumour responses.

View Article and Find Full Text PDF

CD1d-restricted invariant natural killer T cell (iNKT cells) have a limited T cell receptor (TCR) repertoire and share characteristics common to T cells and natural killer cells. While intrathymic selection facilitates the production of T cells carrying self major histocompatibility complex-restricted TCRs, natural killer cells carry an appropriate repertoire of self major histocompatibility complex-recognizing receptors to avoid self-reactivity. Here we show that chronic exposure to specific glycolipid antigen resulted in iNKT cell disappearance and thymus-dependent repopulation of iNKT cells with increased expression of inhibitory Ly-49 molecules that resulted in impaired responsiveness.

View Article and Find Full Text PDF

NKT cells are enigmatic lymphocytes that respond to glycolipid Ags presented by CD1d. Although they are key immunoregulatory cells, with a critical role in immunity to cancer, infection, and autoimmune diseases, little is known about how they respond to antigenic challenge. Current theories suggest that NKT cells die within hours of stimulation, implying that their direct impact on the immune system derives from the initial cytokine burst released before their death.

View Article and Find Full Text PDF

NKT cell development takes place in the thymus, beginning when these cells branch away from CD4+CD8+ mainstream thymocytes upon expression of the Valpha14Jalpha18 T cell receptor (TCR) and recognition of the CD1d molecule. Although NKT cells express an invariant TCR alpha chain, the diverse TCR beta expression leaves open the possibility that the development of these cells is shaped by glycolipid antigen recognition in the context of CD1d. Here, we show that the presence of an agonist glycolipid ligand, alpha-galactosylceramide, while NKT cells are developing in vitro or in vivo, specifically ablates their development.

View Article and Find Full Text PDF

Natural killer (NK) T cells initiate potent antitumor responses when stimulated by exogenous factors such as interleukin (IL)-12 or alpha-galactosylceramide (alpha-GalCer), however, it is not clear whether this reflects a physiological role for these cells in tumor immunity. Through adoptive transfer of NK T cells from wild-type to NK T cell-deficient (T cell receptor [TCR] Jalpha281-/-) mice, we demonstrate a critical role for NK T cells in immunosurveillance of methylcholanthrene (MCA)-induced fibrosarcomas, in the absence of exogenous stimulatory factors. Using the same approach with gene-targeted and/or antibody-depleted donor or recipient mice, we have shown that this effect depends on CD1d recognition and requires the additional involvement of both NK and CD8+ T cells.

View Article and Find Full Text PDF

NKT cells are key players in the regulation of antitumor immunity, particularly in experimental models of tumor immunotherapy, such as IL-12 or alpha-galactosylceramide administration. They may also operate in natural antitumor immunity. NKT cells are best known for their immunosuppressive functions; however, NKT cells interact with a range of other cell types (particularly dendritic cells and NK cells) and the outcome of NKT-cell stimulation depends on these and on the cytokine/co-stimulatory milieu.

View Article and Find Full Text PDF

The antimetastatic effect of the CD1d-binding glycolipid, alpha-galactosylceramide (alpha-GalCer), is mediated by NK1.1(+)T (NKT) cells; however, the mechanisms behind this process are poorly defined. Although it has been shown to involve NK cells and interferon-gamma (IFN-gamma) production, the way these factors collaborate to mediate effective tumor rejection and the importance of other factors characteristic of NKT cell and NK cell activation are unknown.

View Article and Find Full Text PDF