We present electron transport calculations of shocked argon based on an average-atom modeling of the plasma and compare them with measurements, involving both incident and reflected shock waves. Since the corresponding experiments are subject to a 5 T magnetic field, the impact of the latter on the Rankine-Hugoniot equations is taken into account, starting from the magnetoresistive hydrodynamics, and the resistivity tensor is deduced from the Boltzmann equation. The resistivity tensor yields the electrical and Hall resistivities.
View Article and Find Full Text PDFWe present calculations of electrical resistivity for expanded boron, aluminum, titanium, and copper plasmas using the Ziman formulation in the framework of the average-atom model. Our results are compared to experimental data, as well as to other theoretical calculations, relying on the Ziman and Kubo-Greenwood formulations, and based on average-atom models or quantum-molecular-dynamics simulations. The impact of the definition of ionization, paying particular attention to the consistency between the definition and the perfect free electron gas assumption made in the formalism, is discussed.
View Article and Find Full Text PDFThe approach presented in this work allows a consistent calculation of electrical conductivity of dense matter from the solid state to the hot plasma using the same procedure, consisting in dropping elastic scattering contributions to solid's and liquid's structure factors in the framework of the Ziman theory. The solid's structure factor was computed using a multiphonon expansion. The elastic part is the zero-phonon term and corresponds to Bragg peaks, thermally damped by Debye-Waller attenuation factors.
View Article and Find Full Text PDF