Publications by authors named "Nadine Voigt"

Because the blood-brain barrier (BBB) is an obstacle for drug-delivery, carrier systems such as polybutylcyanoacrylate (PBCA) nanoparticles (NPs) have been studied. Yet, little is known of how physiochemical features such as size, surfactants and surface charge influence BBB passage in vivo. We now used a rat model of in vivo imaging of the retina - which is brain tissue and can reflect the situation at the BBB - to study how size and surface charge determine NPs' ability to cross the blood-retina barrier (BRB).

View Article and Find Full Text PDF

Repetitive transorbital alternating current stimulation (rtACS) improves vision in patients with chronic visual impairments and an acute treatment increased survival of retinal neurons after optic nerve crush (ONC) in rodent models of visual system injury. However, despite this protection no functional recovery could be detected in rats, which was interpreted as evidence of "silent survivor" cells. We now analysed the mechanisms underlying this "silent survival" effect.

View Article and Find Full Text PDF

Polybutylcyanoacrylate nanoparticles (PBCA NPs) are candidates for a drug delivery system, which can cross the blood-brain barrier (BBB). Because little is known about their toxicity, we exposed cells to PBCA NPs in vitro and in vivo and monitored their life and death assays. PBCA NPs were fabricated with different surfactants according to the mini-emulsion technique.

View Article and Find Full Text PDF

Taste perception elicited by food constituents and facilitated by sensory cells in the oral cavity is important for the survival of organisms. In addition to the five basic taste modalities, sweet, umami, bitter, sour, and salty, orosensory perception of stimuli such as fat constituents is intensely investigated. Experiments in rodents and humans suggest that free fatty acids represent a major stimulus for the perception of fat-containing food.

View Article and Find Full Text PDF

Nanoparticles (NP) can deliver drugs across the blood-brain barrier (BBB), but little is known which of the factors surfactant, size and zeta-potential are essential for allowing BBB passage. To this end we designed purpose-built fluorescent polybutylcyanoacrylate (PBCA) NP and imaged the NP's passage over the blood-retina barrier - which is a model of the BBB - in live animals. Rats received intravenous injections of fluorescent PBCA-NP fabricated by mini-emulsion polymerisation to obtain various NP's compositions that varied in surfactants (non-ionic, anionic, cationic), size (67-464nm) and zeta-potential.

View Article and Find Full Text PDF

The local Li cation coordination motifs and the interactions between the hosting methacrylate-based polymer membrane and the liquid electrolyte [1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC)] are studied by employing liquid and solid-state NMR spectroscopy. At low temperatures, two different coordination modes for Li cations are identified with the help of dipolar-based solid-state NMR techniques, one of which is the exclusive coordination by DMC molecules, while the other is a co-coordination by the polymer and DMC molecules. At room temperature, Li cations are found to be extremely mobile, coordinated by EC and DMC molecules as well as the copolymer, as found by liquid-state NMR spectroscopy.

View Article and Find Full Text PDF

Traumatic optic nerve injury leads to retrograde death of retinal ganglion cells (RGCs), but transcorneal electrical stimulation (TES) can increase the cell survival rate. To understand the mechanisms and to further define the TES-induced effects we monitored in living animals RGC morphology and survival after optic nerve crush (ONC) in real time by using in vivo confocal neuroimaging (ICON) of the retina. ONC was performed in rats and ICON was performed before crush and on post-lesion days 3, 7 and 15 which allowed us to repeatedly record RGC number and size.

View Article and Find Full Text PDF

Transcorneal alternating current stimulation (tACS) was proposed to decrease acute death of retinal ganglion cells after optic nerve transection in rats, but it is not known if cell survival is long-term and associated with functional restoration. We therefore evaluated the effects of tACS in a rat model of optic nerve crush using anatomical, electrophysiological and behavioural measures. Rats were trained in a brightness discrimination visual task and the retinal ganglion cell number was quantified with in vivo confocal neuroimaging.

View Article and Find Full Text PDF

The sense of taste plays an important role in the evaluation of the nutrient composition of consumed food. Bitter taste in particular is believed to serve a warning function against the ingestion of poisonous substances. In the past years enormous progress was made in the characterization of bitter taste receptors, including their gene expression patterns, pharmacological features and presumed physiological roles in gustatory as well as in non-gustatory tissues.

View Article and Find Full Text PDF

Because the potential neurotoxicity of nanoparticles is a significant issue, characterisation of nanoparticle entry into the brain is essential. Here, we describe an in vivo confocal neuroimaging method (ICON) of visualising the entry of fluorescent particles into the parenchyma of the central nervous system (CNS) in live animals using the retina as a model. Rats received intravenous injections of fluorescence-labelled polybutyl cyanoacrylate nanoparticles that had been synthesised by a standard miniemulsion polymerisation process.

View Article and Find Full Text PDF

In contrast to carbohydrates and proteins, which are detected by specialized taste receptors in the forms of their respective building blocks, sugars, and L-amino acids, the third macronutrient, lipids, has until now not been associated with gustatory receptors. Instead, the recognition of fat stimuli was believed to rely mostly on textural, olfactory, and postingestive cues. During the recent years, however, research done mainly in rodent models revealed an additional gustatory component for the detection of long-chain fatty acids (LCFAs), the main taste-activating component of lipids.

View Article and Find Full Text PDF