Publications by authors named "Nadine Teichweyde"

Human fibroblasts from a Cockayne Syndrome (CS) patient carrying the compound heterozygous c.1131 A > T and c.2571C > T within ERCC Excision Repair 6 (ERCC6) were reprogramed to generate integration-free induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSC) are a promising tool for replacing animal-based experiments. To warrant data reproducibility, quality-controlled research material is recommended. While the need for global harmonization of quality standards for stem cell banking centers, commercial providers, pre-clinical and clinical use of cells is well doc­umented, there are no recommendations available for quality control of hiPSC in an academic research environment to date.

View Article and Find Full Text PDF

The metabolic requirements change during cell proliferation and differentiation. Upon antigen-stimulation, effector T cells switch from adenosine-triphospate (ATP)-production by oxidative phosphorylation in the mitochondria to glycolysis. In the gut it was shown that short chain fatty acids (SCFA), fermentation products of the microbiota in colon, ameliorate inflammatory reactions by supporting the differentiation of regulatory T cells.

View Article and Find Full Text PDF

Background Aryl hydrocarbon receptor (AHR)-deficient mice do not support the expansion of dendritic epidermal T cells (DETC), a resident immune cell population in the murine epidermis, which immigrates from the fetal thymus to the skin around birth. Material and Methods In order to identify the gene expression changes underlying the DETC disappearance in AHR-deficient mice, we analyzed microarray RNA-profiles of DETC, sorted from the skin of two-week-old AHR-deficient mice and their heterozygous littermates. In vitro studies were done for verification, and IL-10, AHR repressor (AHRR), and c-Kit deficient mice analyzed for DETC frequency.

View Article and Find Full Text PDF

Generation of hematopoietic stem cells (HSCs) from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known.

View Article and Find Full Text PDF

Background: The de novo generation of patient-specific hematopoietic stem and progenitor cells from induced pluripotent stem cells (iPSCs) has become a promising approach for cell replacement therapies in the future. However, efficient differentiation protocols for producing fully functional human hematopoietic stem cells are still missing. In the mouse model, ectopic expression of the human homeotic selector protein HOXB4 has been shown to enforce the development of hematopoietic stem cells (HSCs) in differentiating pluripotent stem cell cultures.

View Article and Find Full Text PDF

The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code.

View Article and Find Full Text PDF

Monoclonal antibodies directed to the B-cell-specific CD20-antigen are successfully used for the treatment of lymphomas and autoimmune diseases. Here, we compare the anti-B-cell activity of three different antibodies directed to CD20: (i) a chimeric, monospecific antibody, (ii) an Fc-optimized variant thereof, and (iii) a bispecific CD20×CD95-antibody in a newly developed recombinant format, termed Fabsc. The bispecific antibody specifically triggers the CD95 death receptor on malignant, as well as activated, normal B-cells.

View Article and Find Full Text PDF