In-vitro data indicate major effects of the genetically polymorphic cytochrome P450 enzyme 2C9 (CYP2C9) on the pharmacokinetics of celecoxib, a nonsteroidal anti-inflammatory drug acting as selective cyclooxygenase-2 inhibitor. Human studies report decreased clearance in heterozygous carriers of the CYP2C9 variant Ile359Leu (*3), but results appeared controversial and only data on single subjects carrying the homozygous CYP2C9*3/*3 genotype have been published. We measured single-dose kinetics of celecoxib and its main metabolites hydroxy- and carboxy-celecoxib in 21 healthy volunteers who were selected as hetero- (n = 4) and homozygous (n = 3) carriers of CYP2C9 variants Arg144Cys (*2) and Ile359Leu (*3).
View Article and Find Full Text PDFAims: The cytochrome P450 enzyme CYP2C9 catalyses the 4'-hydroxylation of the nonsteroidal analgesic drug diclofenac in humans. We studied the influences of the known amino acid variants, CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu), on diclofenac pharmacokinetics after a 50-mg oral dose of diclofenac in healthy volunteers. As a surrogate marker of diclofenac activity, the ex vivo formation of prostaglandin E2 and thromboxane B2, which reflects COX-2 and COX-1 activity, was measured.
View Article and Find Full Text PDF