This study aims to determine the optimal structure of the Beam Shaping Assembly (BSA) for an AB-BNCT (Accelerator-Based Boron Neutron Capture Therapy) facility. The aim is to maximize the possible depth of treatment for glioblastoma while ensuring that a treatment time constraint is not exceeded. Approach.
View Article and Find Full Text PDF. The design of neutron moderators for BNCT treatment units currently relies on parametric approaches, which yield quality results but are ultimately limited by human imagination. Efficient but non-intuitive design solutions may thus be missed out.
View Article and Find Full Text PDFBackground And Purpose: Accelerator-Based Boron Neutron Capture Therapy is a radiotherapy based on compact accelerator neutron sources requiring an epithermal neutron field for tumour irradiations. Neutrons of 10 keV are considered as the maximum optimised energy to treat deep-seated tumours. We investigated, by means of Monte Carlo simulations, the epithermal range from 10 eV to 10 keV in order to optimise the maximum epithermal neutron energy as a function of the tumour depth.
View Article and Find Full Text PDF