Pharmaceuticals are recognised as environmental contaminants of emerging concern (CECs) due to their increasing presence in the aquatic environment, along with high bioactivity linked to their therapeutic use. Therefore, information on environmental levels is urgently required. This study examined the presence of a range of common pharmaceuticals in oysters and mussels intended for human consumption from England and Wales using stable isotope dilution tandem mass spectrometry.
View Article and Find Full Text PDFThe farming of shellfish plays an important role in providing sustainable economic growth in coastal, rural communities in Scotland and acts as an anchor industry, supporting a range of ancillary jobs in the processing, distribution and exporting industries. The Scottish Government is encouraging shellfish farmers to double their economic contribution by 2030. These farmers face numerous challenges to reach this goal, among which is the problem caused by toxin-producing microplankton that can contaminate their shellfish, leading to harvesting site closure and the recall of product.
View Article and Find Full Text PDFCertain species of marine microalgae produce potent biotoxins that pose a risk to human health if contaminated seafood is consumed, particularly filter feeding bivalve shellfish. In regions where this is likely to occur water and seafood produce are regularly monitored for the presence of harmful algal cells and their associated toxins, but the current approach is flawed by a lengthy delay before results are available to local authorities. Quantitative Polymerase Chain Reaction (qPCR) can be used to measure phytoplankton DNA sequences in a shorter timeframe, however it is not currently used in official testing practices.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
August 2021
A single laboratory method performance verification is reported for a rapid sensitive UHPLC-MS/MS method for the quantification of eight cyclic imine and two brevetoxin analogues in two bivalve shellfish matrices: mussel (Mytilus edulis) and Pacific oyster (Crassostrea gigas). Targeted cyclic imine analogues were from the spirolide, gymnodimine and pinnatoxin groups, namely 20-Me-SPX-C, 13-desMe-SPX-C, 13,19-didesMe-SPX-C, GYM-A, 12-Me-GYM, PnTx-E, PnTx-F and PnTx-G. Brevetoxin analogues consisted of the shellfish metabolites BTX-B5 and S-desoxy-BTX-B2.
View Article and Find Full Text PDFA simple, rapid ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed and optimized for the quantitation of a range of pharmaceuticals, metabolites, and related bioactive compounds in the bivalve mollusc species mussels (Mytilus edulis) and Pacific oysters (Crassostrea gigas). Shellfish tissues were extracted using a simple solvent-based extraction method prior to concentration and purification by pass-through solid-phase extraction and quantified using stable isotope dilution MS/MS. The analytes covered a range of therapeutic classes including antidepressants, anticonvulsants, beta-blockers, and antiplatelets.
View Article and Find Full Text PDF