Publications by authors named "Nadine Merkley"

[D-Leu]MC-LY () ([M + H]/ 1044.5673, Δ 2.0 ppm), a new microcystin, was isolated from strain CPCC464.

View Article and Find Full Text PDF

Metabolic changes in spikelets of wheat varieties FL62R1, Stettler, Muchmore and Sumai3 following Fusarium graminearum infection were explored using NMR analysis. Extensive 1D and 2D 1H NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. In addition, metabolic changes that are observed in all studied varieties as well as wheat variety specific changes have been determined and discussed.

View Article and Find Full Text PDF

Soricidin is a 54-amino acid peptide found in the paralytic venom of the northern short-tailed shrew (Blarina brevicauda) and has been found to inhibit the transient receptor potential of vallinoid type 6 (TRPV6) calcium channels. We report that two shorter peptides, SOR-C13 and SOR-C27, derived from the C-terminus of soricidin, are high-affinity antagonists of human TRPV6 channels that are up-regulated in a number of cancers. Herein, we report molecular imaging methods that demonstrate the in vivo diagnostic potential of SOR-C13 and SOR-C27 to target tumor sites in mice bearing ovarian or prostate tumors.

View Article and Find Full Text PDF

In this study, we constructed and evaluated a target-specific, salt-resistant antimicrobial peptide (AMP) that selectively targeted Streptococcus mutans, a leading cariogenic pathogen. The rationale for creating such a peptide was based on the addition of a targeting domain of S. mutans ComC signaling peptide pheromone (CSP) to a killing domain consisting of a portion of the marine-derived, broad-spectrum AMP pleurocidin to generate a target-specific AMP.

View Article and Find Full Text PDF

Degradation of misfolded and damaged proteins by the 26 S proteasome requires the substrate to be tagged with a polyubiquitin chain. Assembly of polyubiquitin chains and subsequent substrate labeling potentially involves three enzymes, an E1, E2, and E3. E2 proteins are key enzymes and form a thioester intermediate through their catalytic cysteine with the C-terminal glycine (Gly76) of ubiquitin.

View Article and Find Full Text PDF

E2 conjugating enzymes form a thiol ester intermediate with ubiquitin, which is subsequently transferred to a substrate protein targeted for degradation. While all E2 proteins comprise a catalytic domain where the thiol ester is formed, several E2s (class II) have C-terminal extensions proposed to control substrate recognition, dimerization, or polyubiquitin chain formation. Here we present the novel solution structure of the class II E2 conjugating enzyme Ubc1 from Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Ubiquitination plays an important role in many biological processes, including DNA repair, cell cycle regulation, and protein degradation. In the latter pathway the ubiquitin-conjugating enzymes or E2 enzymes are important proteins forming a key E2-ubiquitin thiolester prior to substrate labelling. While the structure of the 150-residue catalytic domain has been well characterized, a subset of E2 enzymes (class II) carry a variable length C-terminal "tail" where structural detail is not available.

View Article and Find Full Text PDF