Publications by authors named "Nadine Mathieu"

Sustainable data management in biomedical research requires documentation of metadata for all experiments and results. Scientists usually document research data and metadata in laboratory paper notebooks. An electronic laboratory notebook (ELN) can keep metadata linked to research data resulting in a better understanding of the research results, meaning a scientific benefit [1].

View Article and Find Full Text PDF

Background: Nucleotide excision repair is a versatile DNA repair reaction that removes bulky adducts generated by environmental mutagens such as the UV spectrum of sunlight or chemical carcinogens. Current multistep models of this excision repair pathway accommodate its broad substrate repertoire but fail to explain the stringent selectivity toward damaged nucleotides among excess native DNA. To understand the mechanism of bulky lesion recognition, we postulated that it is necessary to analyze the function of xeroderma pigmentosum group D (XPD) protein beyond its well-known role in the unwinding of double-stranded DNA.

View Article and Find Full Text PDF

The most detrimental responses of the UV-exposed skin are triggered by cyclobutane pyrimidine dimers (CPDs). Although placental mammals rely solely on nucleotide excision repair (NER) to eliminate CPDs, none of the core NER factors are apparently able to distinguish this hazardous lesion from native DNA, raising the question of how CPDs are circumscribed to define correct excision boundaries. A key NER intermediate involves unwinding of the damaged duplex by transcription factor TFIIH, a reaction that requires xeroderma pigmentosum group D (XPD) protein.

View Article and Find Full Text PDF

Xeroderma pigmentosum group C (XPC) protein is a sensor of helix-distorting DNA lesions, the function of which is to trigger the global genome repair (GGR) pathway. Previous studies demonstrated that XPC protein operates by detecting the single-stranded character of non-hydrogen-bonded bases opposing lesion sites. This mode of action is supported by structural analyses of the yeast Rad4 homologue that identified critical side chains making close contacts with a pair of extrahelical nucleotides.

View Article and Find Full Text PDF

The recognition and subsequent repair of DNA damage are essential reactions for the maintenance of genome stability. A key general sensor of DNA lesions is xeroderma pigmentosum group C (XPC) protein, which recognizes a wide variety of helix-distorting DNA adducts arising from ultraviolet (UV) radiation, genotoxic chemicals and reactive metabolic byproducts. By detecting damaged DNA sites, this unique molecular sensor initiates the global genome repair (GGR) pathway, which allows for the removal of all the aforementioned lesions by a limited repertoire of excision factors.

View Article and Find Full Text PDF