Publications by authors named "Nadine L Vastenhouw"

The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells. It remains unclear, however, if and how transcription bodies affect gene expression. Here we disrupted the formation of two prominent endogenous transcription bodies that mark the onset of zygotic transcription in zebrafish embryos and analysed the effect on gene expression using enriched SLAM-seq and live-cell imaging.

View Article and Find Full Text PDF

In the cytoplasm, filamentous actin (F-actin) plays a critical role in cell regulation, including cell migration, stress fiber formation, and cytokinesis. Recent studies have shown that actin filaments that form in the nucleus are associated with diverse functions. Here, using live imaging of an F-actin-specific probe, superfolder GFP-tagged utrophin (UtrCH-sfGFP), we demonstrated the dynamics of nuclear actin in zebrafish (Danio rerio) embryos.

View Article and Find Full Text PDF

The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells. How proteins of the transcriptional machinery come together to form such bodies, however, is unclear. Here, we take advantage of two large, isolated, and long-lived transcription bodies that reproducibly form during early zebrafish embryogenesis to characterize the dynamics of transcription body formation.

View Article and Find Full Text PDF

In eukaryotes, DNA is packed inside the cell nucleus in the form of chromatin, which consists of DNA, proteins such as histones, and RNA. Euchromatin, which is permissive for transcription, is spatially organized into transcriptionally inactive domains interspersed with pockets of transcriptional activity. While transcription and RNA have been implicated in euchromatin organization, it remains unclear how their interplay forms and maintains transcription pockets.

View Article and Find Full Text PDF

In animals, the early embryo is mostly transcriptionally silent and development is fueled by maternally supplied mRNAs and proteins. These maternal products are important not only for survival, but also to gear up the zygote's genome for activation. Over the last three decades, research with different model organisms and experimental approaches has identified molecular factors and proposed mechanisms for how the embryo transitions from being transcriptionally silent to transcriptionally competent.

View Article and Find Full Text PDF

Forward genetic screens remain at the forefront of biology as an unbiased approach for discovering and elucidating gene function at the organismal and molecular level. Past mutagenesis screens targeting maternal-effect genes identified a broad spectrum of phenotypes ranging from defects in oocyte development to embryonic patterning. However, earlier vertebrate screens did not reach saturation, anticipated classes of phenotypes were not uncovered, and technological limitations made it difficult to pinpoint the causal gene.

View Article and Find Full Text PDF

In many organisms, early embryonic development is driven by maternally provided factors until the controlled onset of transcription during zygotic genome activation. The regulation of chromatin accessibility and its relationship to gene activity during this transition remain poorly understood. Here, we generated chromatin accessibility maps with ATAC-seq from genome activation until the onset of lineage specification.

View Article and Find Full Text PDF

The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation.

View Article and Find Full Text PDF

The activation of specific gene expression programs depends on the presence of the appropriate signals and the competence of cells to respond to those signals. Although it is well established that cellular competence is regulated in space and time, the molecular mechanisms underlying the loss of competence remain largely unknown. Here, we determine the time window during which zebrafish prospective ectoderm loses its ability to respond to Nodal signals, and show that this coincides with a decrease in the levels of the Nodal co-receptor One-eyed pinhead (Oep).

View Article and Find Full Text PDF

Absolute quantification of proteins elucidates the molecular composition, regulation and dynamics of multiprotein assemblies and networks. Here we report on a method termed MS Western that accurately determines the molar abundance of dozens of user-selected proteins at the subfemtomole level in whole cell or tissue lysates without metabolic or chemical labeling and without using specific antibodies. MS Western relies on GeLC-MS/MS and quantifies proteins by codigestion with an isotopically labeled QconCAT protein chimera composed of concatenated proteotypic peptides.

View Article and Find Full Text PDF

Single molecule fluorescence in situ hybridization (smFISH) is a method to visualize single mRNA molecules. When combined with cellular and nuclear segmentation, transcripts can be assigned to different cellular compartments resulting in quantitative information on transcript levels at subcellular resolution. The use of smFISH in zebrafish has been limited by the lack of protocols and an automated image analysis pipeline for samples of multicellular organisms.

View Article and Find Full Text PDF

Transcription is often stochastic. This is seemingly incompatible with the importance of gene expression during development. Here we show that during zebrafish embryogenesis, transcription activation is stochastic due to (1) genes acquiring transcriptional competence at different times in different cells, (2) differences in cell cycle stage between cells, and (3) the stochastic nature of transcription.

View Article and Find Full Text PDF

In light microscopy, refractive index mismatches between media and sample cause spherical aberrations that often limit penetration depth and resolution. Optical clearing techniques can alleviate these mismatches, but they are so far limited to fixed samples. We present Iodixanol as a non-toxic medium supplement that allows refractive index matching in live specimens and thus substantially improves image quality in live-imaged primary cell cultures, planarians, zebrafish and human cerebral organoids.

View Article and Find Full Text PDF

Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear.

View Article and Find Full Text PDF

After fertilization, the embryonic genome is inactive until transcription is initiated during the maternal-to-zygotic transition. How the onset of transcription is regulated in a precisely timed manner, however, is a long standing question in biology. Several mechanisms have been shown to contribute to the temporal regulation of genome activation but none of them can fully explain the general absence of transcription as well the gene specific onset that follows.

View Article and Find Full Text PDF

Analysis of differential gene expression is crucial for the study of cell fate and behavior during embryonic development. However, automated methods for the sensitive detection and quantification of RNAs at cellular resolution in embryos are lacking. With the advent of single-molecule fluorescence in situ hybridization (smFISH), gene expression can be analyzed at single-molecule resolution.

View Article and Find Full Text PDF

The organization of nucleosomes influences transcriptional activity by controlling accessibility of DNA binding proteins to the genome. Genome-wide nucleosome binding profiles have identified a canonical nucleosome organization at gene promoters, where arrays of well-positioned nucleosomes emanate from nucleosome-depleted regions. The mechanisms of formation and the function of canonical promoter nucleosome organization remain unclear.

View Article and Find Full Text PDF

Now that the sequencing of genomes has become routine, understanding how a given genome is used in different ways to obtain cell type diversity in an organism is the next frontier. How specific transcription programs are established during vertebrate embryogenesis, however, remains poorly understood. Transcription is influenced by chromatin structure, which determines the accessibility of DNA-binding proteins to the genome.

View Article and Find Full Text PDF

Histone modifications influence the interactions of transcriptional regulators with chromatin. Studies in embryos and embryonic stem (ES) cells have uncovered histone modification patterns that are diagnostic for different cell types and developmental stages. For example, bivalent domains consisting of regions of H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 4 trimethylation (H3K4me3) mark lineage control genes in ES cells and zebrafish blastomeres.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) comprise a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins. Recent genome-wide studies in humans and the mouse have annotated lncRNAs expressed in cell lines and adult tissues, but a systematic analysis of lncRNAs expressed during vertebrate embryogenesis has been elusive. To identify lncRNAs with potential functions in vertebrate embryogenesis, we performed a time-series of RNA-seq experiments at eight stages during early zebrafish development.

View Article and Find Full Text PDF

After fertilization the embryonic genome is inactive until transcription is initiated during the maternal-zygotic transition. This transition coincides with the formation of pluripotent cells, which in mammals can be used to generate embryonic stem cells. To study the changes in chromatin structure that accompany pluripotency and genome activation, we mapped the genomic locations of histone H3 molecules bearing lysine trimethylation modifications before and after the maternal-zygotic transition in zebrafish.

View Article and Find Full Text PDF

Small RNA molecules participate in a variety of activities in the cell: in a process known as RNA interference (RNAi), double-stranded RNA triggers the degradation of messenger RNA that has a matching sequence; the small RNA intermediates of this process can also modify gene expression in the nucleus. Here we show that a single episode of RNAi in the nematode Caenorhabditis elegans can induce transcriptional silencing effects that are inherited indefinitely in the absence of the original trigger. Our findings may prove useful in the ongoing development of RNAi to treat disease.

View Article and Find Full Text PDF