Publications by authors named "Nadine L Samara"

Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection.

View Article and Find Full Text PDF

N-acetylgalactosaminyl-transferases (GalNAc-Ts) initiate mucin-type O-glycosylation, an abundant and complex posttranslational modification that regulates host-microbe interactions, tissue development, and metabolism. GalNAc-Ts contain a lectin domain consisting of three homologous repeats (α, β, and γ), where α and β can potentially interact with O-GalNAc on substrates to enhance activity toward a nearby acceptor Thr/Ser. The ubiquitous isoenzyme GalNAc-T1 modulates heart development, immunity, and SARS-CoV-2 infectivity, but its substrates are largely unknown.

View Article and Find Full Text PDF

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms.

View Article and Find Full Text PDF

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms.

View Article and Find Full Text PDF

Objective: GALNT2, encoding polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2), was initially discovered as a regulator of high-density lipoprotein metabolism. GalNAc-T2 is known to exert these effects through post-translational modification, i.e.

View Article and Find Full Text PDF

The SARS-CoV-2 coronavirus responsible for the global pandemic contains a novel furin cleavage site in the spike protein (S) that increases viral infectivity and syncytia formation in cells. Here, we show that -glycosylation near the furin cleavage site is mediated by members of the GALNT enzyme family, resulting in decreased furin cleavage and decreased syncytia formation. Moreover, we show that -glycosylation is dependent on the novel proline at position 681 (P681).

View Article and Find Full Text PDF

The SARS-CoV-2 coronavirus responsible for the global pandemic contains a unique furin cleavage site in the spike protein (S) that increases viral infectivity and syncytia formation. Here, we show that O-glycosylation near the furin cleavage site is mediated by specific members of the GALNT enzyme family and is dependent on the novel proline at position 681 (P681). We further demonstrate that O-glycosylation of S decreases furin cleavage.

View Article and Find Full Text PDF

Mucin-type -glycosylation is an essential post-translational modification required for protein secretion, extracellular matrix formation, and organ growth. -Glycosylation is initiated by a large family of enzymes (GALNTs in mammals and PGANTs in ) that catalyze the addition of GalNAc onto the hydroxyl groups of serines or threonines in protein substrates. These enzymes contain two functional domains: a catalytic domain and a C-terminal ricin-like lectin domain comprised of three potential GalNAc recognition repeats termed α, β, and γ.

View Article and Find Full Text PDF

Polypeptide acetylgalactosaminyl transferases (GalNAc-Ts) initiate mucin type -glycosylation by catalyzing the transfer of -acetylgalactosamine (GalNAc) to Ser or Thr on a protein substrate. Inactive and partially active variants of the isoenzyme GalNAc-T12 are present in subsets of patients with colorectal cancer, and several of these variants alter nonconserved residues with unknown functions. While previous biochemical studies have demonstrated that GalNAc-T12 selects for peptide and glycopeptide substrates through unique interactions with its catalytic and lectin domains, the molecular basis for this distinct substrate selectivity remains elusive.

View Article and Find Full Text PDF

Endonuclease V (EndoV) cleaves the second phosphodiester bond 3' to a deaminated adenosine (inosine). Although highly conserved, EndoV homologs change substrate preference from DNA in bacteria to RNA in eukaryotes. We have characterized EndoV from six different species and determined crystal structures of human EndoV and three EndoV homologs from bacteria to mouse in complex with inosine-containing DNA/RNA hybrid or double-stranded RNA (dsRNA).

View Article and Find Full Text PDF

Regulated secretion is an essential process where molecules destined for export are directed to membranous secretory granules, where they undergo packaging and maturation. Here, we identify a gene (pgant9) that influences the structure and shape of secretory granules within the Drosophila salivary gland. Loss of pgant9, which encodes an O-glycosyltransferase, results in secretory granules with an irregular, shard-like morphology, and altered glycosylation of cargo.

View Article and Find Full Text PDF

Catalysis by members of the RNase H superfamily of enzymes is generally believed to require only two Mg ions that are coordinated by active-site carboxylates. By examining the catalytic process of Bacillus halodurans RNase H1 in crystallo, however, we found that the two canonical Mg ions and an additional K failed to align the nucleophilic water for RNA cleavage. Substrate alignment and product formation required a second K and a third Mg, which replaced the first K and departed immediately after cleavage.

View Article and Find Full Text PDF

Structures of enzyme-substrate/product complexes have been studied for over four decades but have been limited to either before or after a chemical reaction. Recently using in crystallo catalysis combined with X-ray diffraction, we have discovered that many enzymatic reactions in nucleic acid metabolism require additional metal ion cofactors that are not present in the substrate or product state. By controlling metal ions essential for catalysis, the in crystallo approach has revealed unprecedented details of reaction intermediates.

View Article and Find Full Text PDF

Transcription factor IIH (TFIIH) is essential for both transcription and nucleotide excision repair (NER). DNA lesions are initially detected by NER factors XPC and XPE or stalled RNA polymerases, but only bulky lesions are preferentially repaired by NER. To elucidate substrate specificity in NER, we have prepared homogeneous human ten-subunit TFIIH and its seven-subunit core (Core7) without the CAK module and show that bulky lesions in DNA inhibit the ATPase and helicase activities of both XPB and XPD in Core7 to promote NER, whereas non-genuine NER substrates have no such effect.

View Article and Find Full Text PDF

The deubiquitinating module (DUBm) of the SAGA coactivator contains the Ubp8 isopeptidase, Sgf11, Sus1, and Sgf73, which form a highly interconnected complex. Although Ubp8 contains a canonical USP catalytic domain, it is only active when in complex with the other DUBm subunits. The Sgf11 zinc finger (Sgf11-ZnF) binds near the Ubp8 active site and is essential for full activity, suggesting that the Sgf11-ZnF helps maintain the active conformation of Ubp8.

View Article and Find Full Text PDF

Eukaryotic transcriptional coactivators are multi-subunit complexes that both modify chromatin and recognize histone modifications. Until recently, structural information on these large complexes has been limited to isolated enzymatic domains or chromatin-binding motifs. This review summarizes recent structural studies of the SAGA coactivator complex that have greatly advanced our understanding of the interplay between its different subunits.

View Article and Find Full Text PDF

SAGA is a transcriptional coactivator complex that is conserved across eukaryotes and performs multiple functions during transcriptional activation and elongation. One role is deubiquitination of histone H2B, and this activity resides in a distinct subcomplex called the deubiquitinating module (DUBm), which contains the ubiquitin-specific protease Ubp8, bound to Sgf11, Sus1, and Sgf73. The deubiquitinating activity depends on the presence of all four DUBm proteins.

View Article and Find Full Text PDF