Publications by authors named "Nadine Kuhn"

Background: Loneliness is a widespread phenomenon associated with a number of negative health outcomes. Older individuals may constitute one important target group with a need for effective interventions. However, despite evidence showing that addressing maladaptive social cognition (e.

View Article and Find Full Text PDF

Chronic activation of the immune system in HIV infection is one of the strongest predictors of morbidity and mortality. As such, approaches that reduce immune activation have received considerable interest. Previously, we demonstrated that administration of a type I interferon receptor antagonist (IFN-1ant) during acute SIV infection of rhesus macaques results in increased virus replication and accelerated disease progression.

View Article and Find Full Text PDF

Eculizumab inhibits the terminal, lytic pathway of complement by blocking the activation of the complement protein C5 and shows remarkable clinical benefits in certain complement-mediated diseases. However, several reports suggest that activation of C5 is not always completely suppressed in patients even under excess of eculizumab over C5, indicating that residual C5 activity may derogate the drug's therapeutic benefit under certain conditions. By using eculizumab and the tick-derived C5 inhibitor coversin, we determined conditions ex vivo in which C5 inhibition is incomplete.

View Article and Find Full Text PDF

The Ornithodoros moubata Complement Inhibitor (OmCI) binds complement component 5 (C5) with high affinity and, thus, selectively prevents proteolytic activation of the terminal lytic complement pathway. A recombinant version of OmCI (also known as Coversin and rEV576) has proven efficacious in several animal models of complement-mediated diseases and successfully completed a phase Ia clinical trial. Coversin is a small 17 kDa lipocalin protein which has a very short plasma half-life if not bound to C5; therefore, the drug requires frequent dosing.

View Article and Find Full Text PDF

IFNβ is a common therapeutic option to treat multiple sclerosis. It is unique among the family of type I IFNs in that it binds to the interferon receptors with high affinity, conferring exceptional biological properties. We have previously reported the generation of an interferon superagonist (dubbed YNSα8) that is built on the backbone of a low affinity IFNα but modified to exhibit higher receptor affinity than even for IFNβ.

View Article and Find Full Text PDF