Publications by authors named "Nadine Halberstadt"

We study superfluid helium droplets multiply charged with Na+ or Ca+ ions. When stable, the charges are found to reside in equilibrium close to the droplet surface, thus representing a physical realization of Thomson's model. We find the minimum radius of the helium droplet that can host a given number of ions using a model whose physical ingredients are the solvation energy of the cations, calculated within the helium density functional theory approach, and their mutual Coulomb repulsion energy.

View Article and Find Full Text PDF

We report electron diffraction results of xenon clusters formed in superfluid helium droplets, with droplet sizes in the range of 105-106 atoms/droplet and xenon clusters from a few to a few hundred atoms. Under four different experimental conditions, the diffraction profiles can be fitted using four atom pairs of Xe. For the two experiments performed with higher helium contributions, the fittings with one pair of Xe-He and three pairs of Xe-Xe distances are statistically preferred compared with four pairs of Xe-Xe distances, while the other two experiments exhibit the opposite preference.

View Article and Find Full Text PDF

The sinking of alkali cations in superfluid 4He nanodroplets is investigated theoretically using liquid 4He time-dependent density functional theory at zero temperature. The simulations illustrate the dynamics of the buildup of the first solvation shell around the ions. The number of helium atoms in this shell is found to linearly increase with time during the first stages of the dynamics.

View Article and Find Full Text PDF

Interactions between molecular hydrogen and ions are of interest in cluster science, astrochemistry and hydrogen storage. In dynamical simulations, H molecules are usually modelled as point particles, an approximation that can fail for anisotropic interactions. Here, we apply an adiabatic separation of the H rotational motion to build effective pseudoatom-ion potentials and in turn study the properties of (H ) Na /Cl clusters.

View Article and Find Full Text PDF

We address the collision of two superfluid 4He droplets at non-zero initial relative velocities and impact parameters within the framework of liquid 4He time-dependent density functional theory at zero temperature. Despite the small size of these droplets (1000 He atoms in the merged droplet) imposed by computational limitations, we have found that quantized vortices may be readily nucleated for reasonable collision parameters. At variance with head-on collisions, where only vortex rings are produced, collisions with a non-zero impact parameter produce linear vortices that are nucleated at indentations appearing on the surface of the deformed merged droplet.

View Article and Find Full Text PDF

The clustering, collision, and relaxation dynamics of pristine and doped helium nanodroplets is theoretically investigated in cases of pickup and clustering of heliophilic argon, collision of heliophobic cesium atoms, and coalescence of two droplets brought into contact by their mutual long-range van der Waals interaction. Three approaches are used and compared with each other. The He time-dependent density functional theory method considers the droplet as a continuous medium and accounts for its superfluid character.

View Article and Find Full Text PDF

We present an experimental study of the dynamics following the photoexcitation and subsequent photoionization of single Cs atoms on the surface of helium nanodroplets. The dynamics of excited Cs atom desorption and readsorption as well as CsHe exciplex formation are measured by using femtosecond pump-probe velocity map imaging spectroscopy and ion time-of-flight spectrometry. The time scales for the desorption of excited Cs atoms off helium nanodroplets as well as the time scales for CsHe exciplex formation are experimentally determined for the 6p states of Cs.

View Article and Find Full Text PDF

Light absorption or fluorescence excitation spectroscopy of alkali atoms attached to He droplets is investigated as a possible way for detecting the presence of vortices. To this end, we have calculated the equilibrium configuration and energetics of alkali atoms attached to a He droplet hosting a vortex line using He density functional theory. We use them to study how the dipole absorption spectrum of the alkali atom is modified when the impurity is attached to a vortex line.

View Article and Find Full Text PDF

The fragmentation upon electron impact ionization of ArHe is investigated by means of mixed quantum-classical dynamics simulations. The Ar dopant dynamics is described by a surface hopping method coupled with a diatomics-in-molecules model to properly take into account the multiple Ar electronic surfaces and possible transitions between them. Helium atoms are treated individually using zero-point averaged dynamics, a method based on the building of an effective He-He potential.

View Article and Find Full Text PDF

The capture of multiple impurities by He droplets is investigated using real time dynamics within the density functional approach applied to liquid helium. We study the case of two or six Ar atoms colliding with a He droplet either in its ground state or hosting a six-vortex array. Depending on initial kinematic conditions, two different Ar structures are found: either a compact, gas-phase like cluster, or a loosely bound metastable cluster with helium density caged inside.

View Article and Find Full Text PDF

We study the photodissociation of the potassium atom from a superfluid helium nanodroplet upon 5s 2S or 4p 2P excitation using the time-dependent helium density functional method (He-TDDFT). The importance of quantum effects is assessed by comparing the absorption spectrum obtained for a classical or a quantum description of the K atom. In the case of the 5s 2S ← 4s 2S excitation the difference is rather large, and we use a quantum description for the ensuing direct dissociation dynamics.

View Article and Find Full Text PDF

We simulate the non-adiabatic laser alignment of the weakly bound He-CHI complex based on a quantum mechanical wave packet calculation for a model He-CHI interaction potential. Two different regimes are found depending on the laser intensity. At intensities typical of non-adiabatic alignment experiments, the rotational dynamics resembles that of the isolated molecule.

View Article and Find Full Text PDF

The possibility for helium-induced electronic transitions in a photo-excited atom is investigated using Ba excited to the 6p P state as a prototypical example. A diabatization scheme has been designed to obtain the necessary potential energy surfaces and couplings for complexes of Ba with an arbitrary number of helium atoms. It involves computing new He-Ba electronic wave functions and expanding them in determinants of the non-interacting complex.

View Article and Find Full Text PDF

Doped He nanodroplets are ideal model systems to study the dynamics of elementary photophysical processes in heterogeneous nanosystems. Here we present a combined experimental and theoretical investigation of the formation of free RbHe exciplex molecules from laser-excited Rb-doped He nanodroplets. Upon excitation of a droplet-bound Rb atom to the 5p3/22Π3/2-state, a stable RbHe exciplex forms within about 20 ps.

View Article and Find Full Text PDF

We present a computational study, based on time-dependent Density Functional theory, of the real-time interaction and trapping of Ar and Xe atoms in superfluid He nanodroplets either pure or hosting quantized vortex lines. We investigate the phase-space trajectories of the impurities for different initial conditions and describe in detail the complex dynamics of the droplets during the capture of the impurities. We show that the interaction of the incoming atom with the vortex core induces large bending and twisting excitations of the vortex core lines, including the generation of helical Kelvin waves propagating along the vortex core.

View Article and Find Full Text PDF

The real-time dynamics of excited alkali metal atoms (Rb) attached to quantum fluid He nanodroplets is investigated using femtosecond imaging spectroscopy and time-dependent density functional theory. We disentangle the competing dynamics of desorption of excited Rb atoms off the He droplet surface and solvation inside the droplet interior as the Rb atom is ionized. For Rb excited to the 5p and 6p states, desorption occurs on starkly differing time scales (∼100 versus ∼1 ps, respectively).

View Article and Find Full Text PDF

The resonant Raman spectra of the H2O⋯Cl2 and H2O⋯Br2 halogen-bonded complexes have been studied in the framework of a 2-dimensional model previously used in the simulation of their UV-visible absorption spectra using time-dependent techniques. In addition to the vibrational progression along the dihalogen mode, a progression is observed along the intermolecular mode and its combination with the intramolecular one. The relative intensity of the inter to intramolecular vibrational progressions is about 15% for H2O⋯Cl2 and 33% for H2O⋯Br2.

View Article and Find Full Text PDF

Dissociative photoionization of the He···Li2 van der Waals complex to the ground electronic state of the He···Li2+ ion is investigated theoretically. The photoionization cross section is computed using existing interaction potentials. Resonances are found on top of a structured continuum.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how sodium (Na) atoms behave on helium nanodroplets after being excited through a specific electronic transition (3p ← 3s).
  • When excited to the 3p (2)Π states, the Na atoms and their complexes with helium (NaHe) both get released from the surface, with different mechanisms for the two types.
  • Excitation to the 3p (2)Σ state primarily causes Na atoms to desorb rapidly, accompanied by a relaxation process influenced by helium, suggesting a complex interaction between the Na atoms and helium at different energies.
View Article and Find Full Text PDF

The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He)200, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy.

View Article and Find Full Text PDF

The effect of quantum mechanics (QM) on the details of the nucleation process is explored employing Ne clusters as test cases due to their semi-quantal nature. In particular, we investigate the impact of quantum mechanics on both condensation and dissociation rates in the framework of the microcanonical ensemble. Using both classical trajectories and two semi-quantal approaches (zero point averaged dynamics, ZPAD, and Gaussian-based time dependent Hartree, G-TDH) to model cluster and collision dynamics, we simulate the dissociation and monomer capture for Ne(8) as a function of the cluster internal energy, impact parameter and collision speed.

View Article and Find Full Text PDF

Valence electronic excitation spectra are calculated for the H(2)O···Br(2) complex using highly correlated ab initio potentials for both the ground and the valence electronic excited states and a 2-D approximation for vibrational motion. Due to the strong interaction between the O-Br and the Br-Br stretching motions, inclusion of these vibrations is the minimum necessary for the spectrum calculation. A basis set calculation is performed to determine the vibrational wave functions for the ground electronic state and a wave packet simulation is conducted for the nuclear dynamics on the excited state surfaces.

View Article and Find Full Text PDF

The vibrational bound states of the He(2)Ne(+) complex have been determined using a potential energy surface previously published by Seong et al. [J. Chem.

View Article and Find Full Text PDF

All electron ab initio calculations for the interaction of H2O with Cl2 and Br2 are reported for the ground state and the lowest triplet and singlet Pi excited states as a function of both the X-X and O-X bond lengths (X = Cl or Br). For the ground state and lowest triplet state, the calculations are performed with the coupled cluster singles, doubles, and perturbative triple excitation level of correlation using an augmented triple-zeta basis set. For the 1Pi state the multireference average quadratic coupled cluster technique was employed.

View Article and Find Full Text PDF