Comput Methods Programs Biomed
March 2023
Background And Objective: The automatic segmentation of perinatal brain structures in magnetic resonance imaging (MRI) is of utmost importance for the study of brain growth and related complications. While different methods exist for adult and pediatric MRI data, there is a lack for automatic tools for the analysis of perinatal imaging.
Methods: In this work, a new pipeline for fetal and neonatal segmentation has been developed.
Objective: To assess fetal liver volume (FLV) by magnetic resonance imaging (MRI) in cytomegalovirus (CMV)-infected fetuses compared to a group of healthy fetuses.
Method: Most infected cases were diagnosed by the evidence of ultrasound abnormalities during routine scans and in some after maternal CMV screening. CMV-infected fetuses were considered severely or mildly affected according to prenatal brain lesions identified by ultrasound (US)/MRI.
Fetal ventriculomegaly (VM) is a condition in which one or both lateral ventricles are enlarged, and is diagnosed as an atrial diameter larger than 10 mm. Evidence of altered cortical folding associated with VM has been shown in the literature. However, existing works use a single scalar value such as diagnosis or lateral ventricular volume to characterize VM and study its relationship with alterations in cortical folding, thus failing to reveal the spatially-heterogeneous associations.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
September 2018
Fetal ventriculomegaly (VM) is a condition with dilation of one or both lateral ventricles, and is diagnosed as an atrial diameter larger than 10 mm. Evidence of altered cortical folding associated with VM has been shown in the literature. However, existing studies use a holistic approach (i.
View Article and Find Full Text PDFDefining anatomically and functionally meaningful parcellation maps on cortical surface atlases is of great importance in surface-based neuroimaging analysis. The conventional cortical parcellation maps are typically defined based on anatomical cortical folding landmarks in adult surface atlases. However, they are not suitable for fetal brain studies, due to dramatic differences in brain size, shape, and properties between adults and fetuses.
View Article and Find Full Text PDFComput Med Imaging Graph
January 2019
In the field of multi-atlas segmentation, patch-based approaches have shown promising results in the segmentation of biomedical images. In the most common approach, registration is used to warp the atlases to the target space and then the warped atlas labelmaps are fused into a consensus segmentation based on local appearance information encoded in form of patches. The registration step establishes spatial correspondence, which is important to obtain anatomical priors.
View Article and Find Full Text PDFDividing the human cerebral cortex into structurally and functionally distinct regions is important in many neuroimaging studies. Although many parcellations have been created for adults, they are not applicable for fetal studies, due to dramatic differences in brain size, shape and folding between adults and fetuses, as well as dynamic growth of fetal brains. To address this issue, we propose a novel method to divide a population of fetal cortical surfaces into distinct regions based on the dynamic growth patterns of cortical properties, which indicate the underlying changes of microstructures.
View Article and Find Full Text PDFSegmentation of brain structures during the pre-natal and early post-natal periods is the first step for subsequent analysis of brain development. Segmentation techniques can be roughly divided into two families. The first, which we denote as registration-based techniques, rely on initial estimates derived by registration to one (or several) templates.
View Article and Find Full Text PDFObjectives: To perform a comprehensive assessment of cortical development in fetuses with isolated nonsevere ventriculomegaly (INSVM) by neurosonography.
Methods: We prospectively included 40 fetuses with INSVM and 40 controls. INSVM was defined as atrial width between 10.
Neuroimaging of brain diseases plays a crucial role in understanding brain abnormalities and early diagnosis. Of great importance is the study of brain abnormalities and the assessment of deviations in case of maldevelopment. In this work, brain magnetic resonance images from 23 isolated non-severe ventriculomegaly (INSVM) fetuses and 25 healthy controls between 26 and 29 gestational weeks were used to identify INSVM-related cortical folding deviations from normative development.
View Article and Find Full Text PDFIt is challenging to characterize and classify normal and abnormal brain development during early childhood. To reduce the complexity of heterogeneous data population, manifold learning techniques are increasingly applied, which find a low-dimensional representation of the data, while preserving all relevant information. The neighborhood definition used for constructing manifold representations of the population is crucial for preserving the similarity structure and it is highly application dependent.
View Article and Find Full Text PDFInvestigating the human brain in utero is important for researchers and clinicians seeking to understand early neurodevelopmental processes. With the advent of fast magnetic resonance imaging (MRI) techniques and the development of motion correction algorithms to obtain high-quality 3D images of the fetal brain, it is now possible to gain more insight into the ongoing maturational processes in the brain. In this article, we present a review of the major building blocks of the pipeline toward performing quantitative analysis of in vivo MRI of the developing brain and its potential applications in clinical settings.
View Article and Find Full Text PDF