Publications by authors named "Nadine Grebenstein"

The increased uptake and storage of lipids in the liver are important features of steatotic liver diseases. The fatty acid translocase/scavenger receptor cluster of differentiation (CD)36 facilitates the hepatic uptake of lipids. We investigated if RRR-α-tocopherol (αT) alone or in combination with atorvastatin (ATV) is capable of preventing hepatic lipid accumulation via down-regulation of CD36.

View Article and Find Full Text PDF

Scope: The mechanisms underlying the preferential retention of a single compound (α-tocopherol (αT)) of the eight vitamin E compounds in the body are incompletely understood. We hypothesized that vitamin E metabolism and not the hepatic α-tocopherol transfer protein (TTP) is responsible for the discrimination against non-αT congeners.

Methods And Results: TTP knockout and wild-type mice (n = 12/group) were fed equimolar concentrations of αT and γ-tocopherol (γT; 50 mg/kg diet each) alone or together with sesamin (2 g/kg diet) for 6 wk.

View Article and Find Full Text PDF

It has been hypothesized in the literature that intake of high-dosage vitamin E supplements might alter the expression of cytochrome P(450) enzymes (CYP), particularly CYP3A4, which may lead to adverse nutrient-drug interactions. Because previously published studies reported conflicting findings, we investigated the pharmacodynamics of the lipid-lowering drug atorvastatin (ATV), a CYP3A4 substrate, in response to high-dose α-tocopherol (αT) feeding and determined protein expression and activities of relevant CYP. Groups of ten female Dunkin-Hartley guinea pigs were fed a control (5% fat) or a high-fat control diet (HFC; 21% fat, 0.

View Article and Find Full Text PDF

Of the eight natural vitamin E congeners (α-, β-, γ-, and δ-tocopherol and α-, β-, γ-, and δ-tocotrienol), the non-α-tocopherol congeners have unique biological properties that may contribute to human health. Their study in vivo has been complicated by the lack of a simple analytical method that completely resolves and sensitively detects all eight natural tocopherols and tocotrienols in biological matrices. We thus developed and validated (according to the FDA guidelines for bioanalytical method validation) the first reversed-phase liquid chromatographic method for the baseline-separation and quantification of all eight tocopherols and tocotrienols.

View Article and Find Full Text PDF