Publications by authors named "Nadine Brahiti"

Delivery of antisense oligonucleotides (ASOs) to airway epithelial cells is arduous due to the physiological barriers that protect the lungs and the endosomal entrapment phenomenon, which prevents ASOs from reaching their intracellular targets. Various delivery strategies involving peptide-, lipid-, and polymer-based carriers are being investigated, yet the challenge remains. S10 is a peptide-based delivery agent that enables the intracellular delivery of biomolecules such as GFP, CRISPR-associated nuclease ribonucleoprotein (RNP), base editor RNP, and a fluorescent peptide into lung cells after intranasal or intratracheal administrations to mice, ferrets, and rhesus monkeys.

View Article and Find Full Text PDF

The cell membrane is a restrictive biological barrier, especially for large, charged molecules, such as proteins. The use of cell-penetrating peptides (CPPs) can facilitate the delivery of proteins, protein complexes, and peptides across the membrane by a variety of mechanisms that are all limited by endosomal sequestration. To improve CPP-mediated delivery, we previously reported the rapid and effective cytosolic delivery of proteins in vitro and in vivo by their coadministration with the peptide S10, which combines a CPP and an endosomal leakage domain.

View Article and Find Full Text PDF

BReast Cancer Associated proteins 1 and 2 (BRCA1, -2) and Partner and Localizer of BRCA2 (PALB2) protein are tumour suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during homology-directed repair (HDR) and interacts with several chromatin proteins. In addition to protein scaffold function, PALB2 binds DNA.

View Article and Find Full Text PDF

Partner and Localizer of BRCA2 (PALB2) has emerged as an important and versatile player in genome integrity maintenance. Biallelic mutations in PALB2 cause Fanconi anemia (FA) subtype FA-N, whereas monoallelic mutations predispose to breast, and pancreatic familial cancers. Herein, we review recent developments in our understanding of the mechanisms of regulation of the tumor suppressor PALB2 and its functional domains.

View Article and Find Full Text PDF