Aims: Pharmacotherapeutic options for obesity treatment include glucagon-like peptide-1 receptor (GLP-1R) agonists, for example, liraglutide. However, an unmet need remains, particularly in patients with a high body mass index (BMI), as GLP-1R agonists are associated with gastrointestinal adverse events (AEs) and some patients do not respond to treatment. Neuropeptide Y (NPY) and peptide YY bind G-protein-coupled Y receptors and represent attractive targets for modulating bodyweight.
View Article and Find Full Text PDFObjectives: Fixed-dose combination (FDC) therapy can improve outcomes in type 2 diabetes (T2D). We evaluated the bioequivalence of 2 doses of an FDC of extended-release metformin (metformin XR), empagliflozin, a sodium-glucose co-transporter 2 inhibitor, and linagliptin, a dipeptidyl peptidase-4 inhibitor, versus corresponding free tablet combinations.
Methods: Two randomized, open-label, two-way crossover studies in healthy adults compared: 2 FDC tablets of empagliflozin 5 mg/linagliptin 2.
The Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is composed of 4 proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner.
View Article and Find Full Text PDFAims: Biglycan, a small leucine-rich proteoglycan, has been shown to play an important role in stabilizing fibrotic scars after experimental myocardial infarction. However, the role of biglycan in the development and regression of cardiomyocyte hypertrophy and fibrosis during cardiac pressure overload and unloading remains elusive. Thus, the aim of the present study was to assess the effect of biglycan on cardiac remodeling in a mouse model of left ventricular pressure overload and unloading.
View Article and Find Full Text PDFRationale: In chronic heart failure, increased adrenergic activation contributes to structural remodeling and altered gene expression. Although adrenergic signaling alters histone modifications, it is unknown, whether it also affects other epigenetic processes, including DNA methylation and its recognition.
Objective: The aim of this study was to identify the mechanism of regulation of the methyl-CpG-binding protein 2 (MeCP2) and its functional significance during cardiac pressure overload and unloading.
Nemaline myopathy (NM) is a congenital myopathy that can result in lethal muscle dysfunction and is thought to be a disease of the sarcomere thin filament. Recently, several proteins of unknown function have been implicated in NM, but the mechanistic basis of their contribution to disease remains unresolved. Here, we demonstrated that loss of a muscle-specific protein, kelch-like family member 40 (KLHL40), results in a nemaline-like myopathy in mice that closely phenocopies muscle abnormalities observed in KLHL40-deficient patients.
View Article and Find Full Text PDFNeuropathic pain is often a chronic condition, disabling and difficult to treat. Using a murine model of neuropathic pain induced by placing a polyethylene cuff around the main branch of the sciatic nerve, we have shown that chronic treatment with β-AR agonists is effective against neuropathic allodynia. β-mimetics are widely used against asthma and chronic obstructive pulmonary disease and may offer an interesting option for neuropathic pain management.
View Article and Find Full Text PDFCell Mol Life Sci
February 2011
In the time since its discovery, phosducin's functions have been intensively studied both in vivo and in vitro. Phosducin's most important biochemical feature in in vitro studies is its binding to heterotrimeric G protein βγ-subunits. Data on phosducin's in vivo relevance, however, have only recently been published but expand the range of biological actions, as shown both in animal models as well as in human studies.
View Article and Find Full Text PDFHypertension and its complications represent leading causes of morbidity and mortality. Although the cause of hypertension is unknown in most patients, genetic factors are recognized as contributing significantly to an individual's lifetime risk of developing the condition. Here, we investigated the role of the G protein regulator phosducin (Pdc) in hypertension.
View Article and Find Full Text PDFVSMCs respond to changes in the local environment by adjusting their phenotype from contractile to synthetic, a phenomenon known as phenotypic modulation or switching. Failure of VSMCs to acquire and maintain the contractile phenotype plays a key role in a number of major human diseases, including arteriosclerosis. Although several regulatory circuits that control differentiation of SMCs have been identified, the decisive mechanisms that govern phenotypic modulation remain unknown.
View Article and Find Full Text PDFAims: Cardiac L-type Ca(2+)-currents show distinct alterations in chronic heart failure, including increased single-channel activity and blunted adrenergic stimulation, but minor changes of whole-cell currents. Expression of L-type Ca(2+)-channel beta(2)-subunits is enhanced in human failing hearts. In order to determine whether prolonged alteration of Ca(2+)-channel gating by beta(2)-subunits contributes to heart failure pathogenesis, we generated and characterized transgenic mice with cardiac overexpression of a beta(2a)-subunit or the pore Ca(v)1.
View Article and Find Full Text PDFSubtype diversity of heterotrimeric G proteins and G protein-coupled receptors enables a wide spectrum of signal transduction. However, the significance of isoforms within receptor or G protein subfamilies has not been fully elucidated. In the present study, we have tested whether alpha(2)-adrenoceptors require specific Galpha isoforms for their function in vivo.
View Article and Find Full Text PDFAlpha(2)-adrenoceptors mediate diverse functions of the sympathetic system and are targets for the treatment of cardiovascular disease, depression, pain, glaucoma, and sympathetic activation during opioid withdrawal. To determine whether alpha(2)-adrenoceptors on adrenergic neurons or alpha(2)-adrenoceptors on nonadrenergic neurons mediate the physiological and pharmacological responses of alpha(2)-agonists, we used the dopamine beta-hydroxylase (Dbh) promoter to drive expression of alpha(2A)-adrenoceptors exclusively in noradrenergic and adrenergic cells of transgenic mice. Dbh-alpha(2A) transgenic mice were crossed with double knockout mice lacking both alpha(2A)- and alpha(2C)-receptors to generate lines with selective expression of alpha(2A)-autoreceptors in adrenergic cells.
View Article and Find Full Text PDFApelin constitutes a novel endogenous peptide system suggested to be involved in a broad range of physiological functions, including cardiovascular function, heart development, control of fluid homeostasis, and obesity. Apelin is also a catalytic substrate for angiotensin-converting enzyme 2, the key severe acute respiratory syndrome receptor. The in vivo physiological role of Apelin is still elusive.
View Article and Find Full Text PDFAlpha2-adrenoceptors belong to the group of nine adrenoceptors which mediate the biological actions of the endogenous catecholamines adrenaline and noradrenaline. Studies with gene-targeted mice carrying deletions in the genes encoding alpha2A-, alpha2B- or alpha2C-adrenoceptors have provided new insight into adrenergic receptor biology: (1) In principle, all three alpha2-receptor subtypes may operate as presynaptic inhibitory feedback receptors to control the release of noradrenaline and adrenaline or other transmitters from neurons. (2) Pharmacological effects of non-selective alpha2-ligands could be assigned to specific receptor subtypes, e.
View Article and Find Full Text PDFObjective: Feedback regulation of norepinephrine release from sympathetic nerves is essential to control blood pressure, heart rate and contractility. Recent experiments in gene-targeted mice have suggested that alpha(2C)-adrenoceptors may operate in a similar feedback mechanism to control the release of epinephrine from the adrenal medulla. As heterozygous polymorphisms in the human alpha(2C)-adrenoceptor gene have been associated with cardiovascular disease including hypertension and chronic heart failure, we have sought to characterize the relevance of alpha(2C)-gene copy number for feedback control of epinephrine release in gene-targeted mice.
View Article and Find Full Text PDFBackground: Inhibition of cardiac sympathetic tone represents an important strategy for treatment of cardiovascular disease, including arrhythmia, coronary heart disease, and chronic heart failure. Activation of presynaptic alpha2-adrenoceptors is the most widely accepted mechanism of action of the antisympathetic drug clonidine; however, other target proteins have been postulated to contribute to the in vivo actions of clonidine.
Methods And Results: To test whether clonidine elicits pharmacological effects independent of alpha2-adrenoceptors, we have generated mice with a targeted deletion of all 3 alpha2-adrenoceptor subtypes (alpha2ABC-/-).