Publications by authors named "Nadine A Kerr"

Cerebrovascular stroke patients exhibit an increased incidence of cardiac arrhythmias. The pathomechanisms underlying post-traumatic cardiac dysfunction include a surge of catecholamines and an increased systemic inflammatory response, but whether inflammasome activation contributes to cardiac dysfunction remains unexplored. Here, we used a mouse model of photothrombotic stroke (PTS) to investigate the role of inflammasome activation in post-stroke cardiac dysfunction by catecholamines and to evaluate the effectiveness of the inflammasome inhibitor IC100 on inflammasome activation.

View Article and Find Full Text PDF
Article Synopsis
  • Traumatic Brain Injury (TBI) is a significant cause of death and disability in the U.S. and may worsen the development of Alzheimer's disease (AD), with both conditions potentially sharing harmful biological markers.
  • Research examined how inflammasome signaling, related to brain injury, behaves differently in AD-affected mice compared to normal mice after TBI, assessing both biochemical and cognitive outcomes.
  • Findings revealed that AD mice exhibited increased inflammasome proteins and worsened cognitive function after TBI, highlighting the need for further exploration of these signaling pathways as possible therapeutic targets for both conditions.
View Article and Find Full Text PDF

Approximately 50% of stroke survivors experience gastrointestinal complications. The innate immune response plays a role in changes to the gut-brain axis after stroke. The purpose of this study is to examine the importance of inflammasome-mediated pyroptosis in disruption of the gut-brain axis after experimental stroke.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) patients frequently develop cardiopulmonary system complications such as acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, the mechanism by which TBI causes ALI/ARDS is not fully understood. Here, we used a severe TBI model to examine the effects of a low-molecular-weight heparin, enoxaparin, on inflammasome activation and lung injury damage.

View Article and Find Full Text PDF

Approximately 30% of traumatic brain injured patients suffer from acute lung injury or acute respiratory distress syndrome. Our previous work revealed that extracellular vesicle (EV)-mediated inflammasome signaling plays a crucial role in the pathophysiology of traumatic brain injury (TBI)-induced lung injury. Here, serum-derived EVs from severe TBI patients were analyzed for particle size, concentration, origin, and levels of the inflammasome component, an apoptosis-associated speck-like protein containing a caspase-recruiting domain (ASC).

View Article and Find Full Text PDF

Approximately 20-25% of traumatic brain injury (TBI) subjects develop acute lung injury (ALI), but the pathomechanisms of TBI-induced ALI remain poorly defined. Our previous work has shown that the inflammasome plays a critical role in TBI-induced secondary pathophysiology and that inflammasome proteins are released in extracellular vesicles (EV) after TBI. Here we investigated whether EV-mediated inflammasome signaling contributed to the etiology of TBI-induced ALI.

View Article and Find Full Text PDF

Reactions of both astrocytes and microglia to central nervous system injury can be beneficial or detrimental to recovery. To gain insights into the functional importance of gliosis, we developed a new model of adolescent closed-head injury (CHI) and interrogated the behavioral, physiological, and cellular outcomes after a concussive CHI in leukemia inhibitory factor (LIF) haplodeficient mice. These mice were chosen because LIF is important for astrocyte and microglial activation.

View Article and Find Full Text PDF