Self-healing polymers such as poly(ethylene-co-methacrylic acid) ionomers (PEMAA) can heal themselves immediately after a projectile puncture which in turn lowers environmental pollution from replacement. In this study, the thermal-mechanical properties and self-healing response of a library of 15 PEMAA copolymers were studied to understand the effects of the ionic content (Li, Na, Zn, Mg) and neutralization percentage (13 to 78%) on the results. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and tensile testing were used to study the thermo-mechanical properties of PEMAA copolymers while the self-healing response was studied using the projectile test.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2022
The search for materials with better performance, longer service life, lower environmental impact, and lower overall cost is at the forefront of polymer science and material engineering. This has led to the development of self-healing polymers with a range of healing mechanisms including capsular-based, vascular, and intrinsic self-healing polymers. The development of self-healable systems has been inspired by the healing of biological systems such as skin wound healing and broken bone reconstruction.
View Article and Find Full Text PDF