Publications by authors named "Nadia Nabil Haj-Yasein"

The peroxisome proliferator activated receptors (PPARs) are important drug targets in treatment of metabolic and inflammatory disorders. Fibrates, acting as PPARα agonists, have been widely used lipid-lowering agents for decades. However, the currently available PPARα targeting agents show low subtype-specificity and consequently a search for more potent agonists have emerged.

View Article and Find Full Text PDF

Plasma cysteine is strongly associated with body fat mass in human cohorts and diets low in cysteine prevents fat accumulation in mice. It is unclear if plasma cysteine affects fat development or if fat accumulation raises plasma cysteine. To determine if cysteine affects adipogenesis, we differentiated 3T3-L1 preadipocytes in medium with reduced cysteine.

View Article and Find Full Text PDF

Stem cells have been demonstrated to possess a therapeutic potential in experimental models of various central nervous system disorders, including stroke. The types of implanted cells appear to play a crucial role. Previously, groups of the stem cell network NRW implemented a feeder-based cell line within the scope of their projects, examining the implantation of stem cells after ischemic stroke and traumatic brain injury.

View Article and Find Full Text PDF

The coupling between the water channel aquaporin-4 (AQP4) and K(+) transport has attracted much interest. In this study, we assessed the effect of Aqp4 deletion on activity-induced [K(+)]o changes in acute slices from hippocampus and corpus callosum of adult mice. We show that Aqp4 deletion has a layer-specific effect on [K(+)]o that precisely mirrors the known effect on extracellular volume dynamics.

View Article and Find Full Text PDF

Key roles of macroglia are inextricably coupled to specialized membrane domains. The perivascular endfoot membrane has drawn particular attention, as this domain contains a unique complement of aquaporin-4 (AQP4) and other channel proteins that distinguishes it from perisynaptic membranes. Recent studies indicate that the polarization of macroglia is lost in a number of diseases, including temporal lobe epilepsy and Alzheimer's disease.

View Article and Find Full Text PDF

Little is known about the physiological roles of aquaporin-4 (AQP4) in the central nervous system. AQP4 water channels are concentrated in endfeet membranes of astrocytes but also localize to the fine astrocytic processes that abut central synapses. Based on its pattern of expression, we predicted that AQP4 could be involved in controlling water fluxes and changes in extracellular space (ECS) volume that are associated with activation of excitatory pathways.

View Article and Find Full Text PDF

Expression of the water channel aquaporin-4 (AQP4) at the blood-brain interface is dependent upon the dystrophin associated protein complex. Here we investigated whether deletion of the Aqp4 gene affects the molecular composition of this protein scaffold and the integrity of the blood-brain barrier. High-resolution immunogold cytochemistry revealed that perivascular expression of α-syntrophin was reduced by 60% in Aqp4(-/-) mice.

View Article and Find Full Text PDF

Tissue- and cell-specific deletion of the Aqp4 gene is required to differentiate between the numerous pools of aquaporin-4 (AQP4) water channels. A glial-conditional Aqp4 knockout mouse line was generated to resolve whether astroglial AQP4 controls water exchange across the blood-brain interface. The conditional knockout was driven by the glial fibrillary acidic protein promoter.

View Article and Find Full Text PDF

Mutations in the human Kir4.1 potassium channel gene (KCNJ10) are associated with epilepsy. Using a mouse model with glia-specific deletion of Kcnj10, we have explored the mechanistic underpinning of the epilepsy phenotype.

View Article and Find Full Text PDF

Although engraftment of undifferentiated pluripotent embryonic stem cells (ESCs) into the injured central nervous system (CNS) may lead to targeted cell replacement of lost/damaged cells, sustained proliferative activity combined with uncontrolled differentiation of implanted cells presents a risk of tumor formation. As tumorigenic potential is thought to be associated with pluripotency of embryonic stem cells, pre-differentiation may circumvent this problem. Recently, it has been demonstrated that tumorigenesis occurs despite pre-differentiation if the neural precursor cells are implanted into the brain of a homologous animal (e.

View Article and Find Full Text PDF